首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   6篇
  国内免费   2篇
航空   140篇
航天技术   45篇
综合类   7篇
航天   29篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2013年   11篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2009年   9篇
  2008年   3篇
  2007年   14篇
  2006年   9篇
  2005年   14篇
  2004年   6篇
  2002年   1篇
  2001年   7篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   7篇
  1994年   3篇
  1992年   7篇
  1991年   1篇
  1989年   1篇
  1985年   13篇
  1984年   9篇
  1983年   1篇
  1982年   4篇
  1981年   15篇
  1980年   1篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1969年   2篇
  1963年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
181.
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.  相似文献   
182.
The interaction of the solar wind with the local interstellar medium is characterized by the self-consistent coupling of solar wind plasma, both upstream and downstream of the heliospheric termination shock, the interstellar plasma, and the neutral atom component of interstellar and solar wind origin. The complex coupling results in the creation of new plasma components (pickup ions), turbulence, and anomalous cosmic rays, and new populations of neutral atoms and their coupling can lead to energetic neutral atoms that can be detected at 1 AU. In this review, we discuss the interaction and coupling of global sized structures (the heliospheric boundary regions) and kinetic physics (the distributions that are responsible for the creation of energetic neutral atoms) based on models that have been developed by the University of Alabama in Huntsville group.  相似文献   
183.
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be \(\geq3\mbox{--}5~\mbox{m}\) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.  相似文献   
184.
185.
Sampling observations of a complete 35d cycle of Her X-1 during 1 March to 5 April 1984 with the low and medium energy X-ray detectors of EXOSAT are presented. The intensities measured in the Argon detectors are compared with the UHURU 35d light curve to obtain the turn-on times of two consecutive cycles as JD 2445753.0 ± 1.0, and JD 2445788.0 ± 0.5. The low energy data is used to determine the rotation period and its derivative as: 1.23779200 s ± 50 ns, and (-2 ± 1) × 10-13 respectively, at the epoch JD 2445778.56. Analysis of the pulse arrival phases indicate that during mid-on phase of the 35d cycle there is shift of about 180°. Evidence for the long term correlated changes of P35 and P1.24s is presented, confirming the low quality of the 35d clock and suggesting that the basic clock mechanism must lie in the disk structure itself.  相似文献   
186.
The scientific objectives, design and capabilities of the Rosetta Lander’s ROMAP instrument are presented. ROMAP’s main scientific goals are longterm magnetic field and plasma measurements of the surface of Comet 67P/Churyumov-Gerasimenko in order to study cometary activity as a function of heliocentric distance, and measurements during the Lander’s descent to investigate the structure of the comet’s remanent magnetisation. The ROMAP fluxgate magnetometer, electrostatic analyser and Faraday cup measure the magnetic field from 0 to 32 Hz, ions of up to 8000 keV and electrons of up to 4200 keV. Additional two types of pressure sensors – Penning and Minipirani – cover a pressure range from 10−8 to 101 mbar. ROMAP’s sensors and electronics are highly integrated, as required by a combined field/plasma instrument with less than 1 W power consumption and 1 kg mass.  相似文献   
187.
The Rosetta Mission: Flying Towards the Origin of the Solar System   总被引:1,自引:0,他引:1  
The ROSETTA Mission, the Planetary Cornerstone Mission in the European Space Agency’s long-term programme Horizon 2000, will rendezvous in 2014 with comet 67P/Churyumov-Gerasimenko close to its aphelion and will study the physical and chemical properties of the nucleus, the evolution of the coma during the comet’s approach to the Sun, and the development of the interaction region of the solar wind and the comet, for more than one year until it reaches perihelion. In addition to the investigations performed by the scientific instruments on board the orbiter, the ROSETTA lander PHILAE will be deployed onto the surface of the nucleus. On its way to comet 67P/Churyumov-Gerasimenko, ROSETTA will fly by and study the two asteroids 2867 Steins and 21 Lutetia.  相似文献   
188.
Medium energy neutral atom (MENA) imager for the IMAGE mission   总被引:1,自引:0,他引:1  
Pollock  C.J.  Asamura  K.  Baldonado  J.  Balkey  M.M.  Barker  P.  Burch  J.L.  Korpela  E.J.  Cravens  J.  Dirks  G.  Fok  M.-C.  Funsten  H.O.  Grande  M.  Gruntman  M.  Hanley  J.  Jahn  J.-M.  Jenkins  M.  Lampton  M.  Marckwordt  M.  McComas  D.J.  Mukai  T.  Penegor  G.  Pope  S.  Ritzau  S.  Schattenburg  M.L.  Scime  E.  Skoug  R.  Spurgeon  W.  Stecklein  T.  Storms  S.  Urdiales  C.  Valek  P.  van Beek  J.T.M.  Weidner  S.E.  Wüest  M.  Young  M.K.  Zinsmeyer  C. 《Space Science Reviews》2000,91(1-2):113-154
The Medium Energy Neutral Atom (MENA) imager was developed in response to the Imaging from the Magnetopause to the Aurora for Global Exploration (IMAGE) requirement to produce images of energetic neutral atoms (ENAs) in the energy range from 1 to 30 keV. These images will be used to infer characteristics of magnetospheric ion distributions. The MENA imager is a slit camera that images incident ENAs in the polar angle (based on a conventional spherical coordinate system defined by the spacecraft spin axis) and utilizes the spacecraft spin to image in azimuth. The speed of incident ENAs is determined by measuring the time-of-flight (TOF) from the entrance aperture to the detector. A carbon foil in the entrance aperture yields secondary electrons, which are imaged using a position-sensitive Start detector segment. This provides both the one-dimensional (1D) position at which the ENA passed through the aperture and a Start time for the TOF system. Impact of the incident ENA on the 1D position-sensitive Stop detector segment provides both a Stop-timing signal and the location that the ENA impacts the detector. The ENA incident polar angle is derived from the measured Stop and Start positions. Species identification (H vs. O) is based on variation in secondary electron yield with mass for a fixed ENA speed. The MENA imager is designed to produce images with 8°×4° angular resolution over a field of view 140°×360°, over an energy range from 1 keV to 30 keV. Thus, the MENA imager is well suited to conduct measurements relevant to the Earth's ring current, plasma sheet, and (at times) magnetosheath and cusp.  相似文献   
189.
Kuhn  J.R.  Schüssler  M. 《Space Science Reviews》2000,94(1-2):177-181
This report is divided into three parts: Section 1 gives a short introduction and a summary of the topics discussed. Section 2 is a position statement by J. Kuhn on the interpretation of the irradiance measurements, while Section 3 gives a position statement by M. Schüssler discussing observations of stars that could be useful for understanding solar variability.  相似文献   
190.
The presence of nonprotein α-dialkyl-amino acids such as α-aminoisobutyric acid (α-AIB) and isovaline (Iva), which are considered to be relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids. However, recent work showing the presence of α-AIB and Iva in peptides produced by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the α-AIB observed in some meteorites. We measured the amino acid distribution and stable carbon and nitrogen isotopic composition of four α-AIB-containing fungal peptides and compared this data to similar meteoritic measurements. We show that the relatively simple distribution of the C(4) and C(5) amino acids in fungal peptides is distinct from the complex distribution observed in many carbonaceous chondrites. We also identify potentially diagnostic relationships between the stable isotopic compositions of pairs of amino acids from the fungal peptides that may aid in ruling out fungal contamination as a source of meteoritic amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号