首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19170篇
  免费   37篇
  国内免费   124篇
航空   10209篇
航天技术   5722篇
综合类   245篇
航天   3155篇
  2021年   154篇
  2018年   268篇
  2017年   145篇
  2016年   175篇
  2014年   434篇
  2013年   515篇
  2012年   441篇
  2011年   650篇
  2010年   474篇
  2009年   833篇
  2008年   857篇
  2007年   436篇
  2006年   436篇
  2005年   432篇
  2004年   475篇
  2003年   556篇
  2002年   508篇
  2001年   620篇
  2000年   374篇
  1999年   472篇
  1998年   472篇
  1997年   333篇
  1996年   418篇
  1995年   485篇
  1994年   481篇
  1993年   368篇
  1992年   355篇
  1991年   250篇
  1990年   244篇
  1989年   427篇
  1988年   213篇
  1987年   246篇
  1986年   246篇
  1985年   644篇
  1984年   528篇
  1983年   417篇
  1982年   490篇
  1981年   628篇
  1980年   250篇
  1979年   189篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   195篇
  1974年   181篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
981.
The ultimate goal of a comprehensive life detection strategy is never to miss life when we encounter it. To accomplish this goal, we must define life in universal, that is, non-Earthcentric, measurable terms. Next, we must understand the nature of biosignatures observed from the measured parameters of life. And finally, we must have a clear idea of the end-member states for the search--what does life, past life, or no life look like (in terms of the measured parameters) at multiple spatial and temporal scales? If we can approach these problems both in the laboratory and in the field on Earth, then we have a chance of being able to detect life elsewhere in our solar system. What are the required limits of detection at each of those scales? What spatial, spectral, and temporal resolutions are necessary to detect life? These questions are actively being investigated in our group, and in this report, we present our strategy and approach to non-Earthcentric life detection.  相似文献   
982.
Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment.  相似文献   
983.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.  相似文献   
984.
In a model experiment plants were grown in sealed chambers on expanded clay aggregate under the luminance of 150 W/m2 PAR and the temperature of 24 degrees C. Seven bacterial strains under investigation, replicated on nutrient medium surface in Petri dishes, were grown in the atmosphere of cultivated plants. Microbial response was evaluated by the difference between colony size in experiment and in control. In control, bacteria grew in the atmosphere of clean air. To study the effects of volatile metabolites of various plant on microbial growth, the experimental data were compared with the background values defined for each individual experiment. Expanded clay aggregate, luminance, temperature, and sealed chamber (without plants) for the background were the same. Volatile metabolites from 28-days old radish plants have been reliably established to have no effect on the growth of microbes under investigation. Metabolites of 30-days old dill and 50-days old garlic have been established to have reliable bacteriostatic effect on the growth of three bacterial strains. Dill and garlic have been found to have different range of effects of volatile substances on bacterial growth. Volatile metabolites of dill and garlic differed in their effect on the sensitivity spectrum of bacteria. An attempt has been made to describe the obtained data mathematically.  相似文献   
985.
The dynamics of dust particles in the solar system is dominated by solar gravity, by solar radiation pressure, or by electromagnetic interaction of charged dust grains with the interplanetary magnetic field. For micron-sized or bigger dust particles solar gravity leads to speeds of about 30 to 40 km s–1 at the Earths distance. Smaller particles that are generated close to the Sun and for which radiation pressure is dominant (the ratio of radiation pressure force over gravity F rad/F grav is generally termed ) are driven out of the solar system on hyperbolic orbits. Such a flow of -meteoroids has been observed by the Pioneer 8, 9 and Ulysses spaceprobes. Dust particles in interplanetary space are electrically charged to typically +5 V by the photo effect from solar UV radiation. The dust detector on Cassini for the first time measured the dust charge directly. The dynamics of dust particles smaller than about 0.1 m is dominated by the electromagnetic interaction with the ambient magnetic field. Effects of the solar wind magnetic field on interstellar grains passing through the solar system have been observed. Nanometer sized dust stream particles have been found which were accelerated by Jupiters magnetic field to speeds of about 300 km s–1.  相似文献   
986.
Cometary nuclei consist of ices intermixed with dust grains and are thought to be the least modified solar system bodies remaining from the time of planetary formation. Flyby missions to Comet P/Halley in 1986 showed that cometary dust is extremely rich in organics (∼50% by mass). However, this proportion appears to be variable among different comets. In comparison with the CI-chondritic abundances, the volatile elements H, C, and N are enriched in cometary dust indicating that cometary solid material is more primitive than CI-chondrites. Relative to dust in dense molecular clouds, bulk cometary dust preserves the abundances of C and N, but exhibits depletions in O and H. In most cases, the carbonaceous component of cometary particles can be characterized as a multi-component mixture of carbon phases and organic compounds. Cluster analysis identified a few basic types of compounds, such as elemental carbon, hydrocarbons, polymers of carbon suboxide and of cyanopolyynes. In smaller amounts, polymers of formaldehyde, of hydrogen cyanide and various unsaturated nitriles also are present. These compositionally simple types, probably, are essential "building blocks", which in various combinations give rise to the variety of involatile cometary organics. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
987.
The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.  相似文献   
988.
The subject of space education is attracting increasing attention, but there are diverging views as to how it should be approached, as can be seen from the following two reports of Education Remote Sensing '92, a conference held in Cardiff, Wales, 28–30 June 1992.  相似文献   
989.
The X-ray properties of Active Galactic Nuclei (AGN) support recent theories which unify the Seyfert 1 nuclei with the Seyfert 2's and radio-quiet quasars. In these objects the underlying spectrum is strongly distorted by the effects of reflection from the accretion flow and by absorption in partially ionised material. These obscure any intrinsic changes in the spectrum, making it difficult (though not impossible) to constrain the nature of the emission process. Conversely, there is no evidence for either of these spectral distortions in the radio-loud AGN, supporting the hypothesis that the X-rays are dominated by beamed emission from the relativistic jet.  相似文献   
990.
EUVITA is a set of 8 extreme UV normal incidence imaging telescopes, each of them sensitive in a narrow band (λ/Δλ = 15 to 80), centered at wavelengths between 50 and 175 Å. Each telescope has an effective area of a few cm2; a field of view of 1.2° and a spatial resolution of 10 arcsec.

EUVITA will be flown on the Russian mission SPECTRUM X-G. This satellite will be launched in a highly eccentric orbit with a period of 4 days, allowing long, uninterrupted observations (e.g. 105 seconds). EUVITA's narrow spectral bands allow the measurement of source parameters such as temperature or power law index as well as interstellar absorption, and will resolve groups of strong lines emitted by optically thin hot plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号