首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2663篇
  免费   2篇
  国内免费   19篇
航空   1317篇
航天技术   1050篇
综合类   10篇
航天   307篇
  2019年   18篇
  2018年   24篇
  2017年   18篇
  2016年   17篇
  2014年   47篇
  2013年   58篇
  2012年   51篇
  2011年   82篇
  2010年   60篇
  2009年   104篇
  2008年   157篇
  2007年   63篇
  2006年   66篇
  2005年   69篇
  2004年   79篇
  2003年   80篇
  2002年   51篇
  2001年   75篇
  2000年   49篇
  1999年   63篇
  1998年   80篇
  1997年   49篇
  1996年   61篇
  1995年   78篇
  1994年   76篇
  1993年   49篇
  1992年   61篇
  1991年   31篇
  1990年   30篇
  1989年   70篇
  1988年   26篇
  1987年   28篇
  1986年   30篇
  1985年   119篇
  1984年   68篇
  1983年   57篇
  1982年   58篇
  1981年   103篇
  1980年   34篇
  1979年   26篇
  1978年   24篇
  1977年   28篇
  1976年   18篇
  1975年   31篇
  1974年   19篇
  1973年   25篇
  1972年   20篇
  1971年   16篇
  1970年   24篇
  1969年   26篇
排序方式: 共有2684条查询结果,搜索用时 31 毫秒
521.
H.  Q.Y. Zhang  N.T. Zhang   《Acta Astronautica》2009,65(7-8):1028-1031
Autonomous navigation of spacecrafts is a difficult task, however, which is a must in future deep space exploration. With multiple spacecrafts flying in space, this aim can be achieved by formation flying spacecraft (FFS) utilizing inverse time difference of arrival (ITDOA) and inverse difference Doppler (IDD) methods, which can locate the position of earth-station from one-way uplink signals in the FFS coordinate, and by way of conversion of coordinates, the position of FFS is achieved in earth-centered earth-fixed (ECEF) coordinate. The ability of neural network (NN) filter in navigation to extract position of spacecrafts from random measuring noise of signal arrival time and Doppler shift is studied with different radius of FFS and surveying parameters. The NN filter used by spacecraft group is new way of unidirectional autonomous navigation and is of high precision of hybrid navigation.  相似文献   
522.
Mixtures of molecular nitrogen and methane have been identified in numerous outer Solar Systemices including the icy surfaces of Pluto and Triton. We have simulated the interaction of ionizing radiation in the Solar System by carrying out a radiolysis experiment on a methane – molecular nitrogen ice mixture with energetic electrons. We have identified the hydrogen cyanide molecule as the most prominent carbon–nitrogen-bearing reaction product formed. Upon warming the irradiated sample, we followed for the first time the kinetics and temporal evolution of the underlying acid–base chemistry which resulted in the formation of the cyanide ion from hydrogen cyanide. On the surfaces of Triton and Pluto and on comets in Oort’s cloud this sort of complex chemistry is likely to occur. In particular, hydrogen cyanide can be produced in low temperature environments (Oort cloud comets) and may be converted into cyanide ions once the comets reach the warmer regions of the Solar System.  相似文献   
523.
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.  相似文献   
524.
The relationship between proton aurora and geomagnetic pulsations Pc1, which are an indicator of development of ion-cyclotron instability in the equatorial magnetosphere, are studied on the basis of the observations of proton aurora from the IMAGE satellite, observations of particle fluxes onboard the low-orbiting NOAA satellites, and geomagnetic pulsation observations at the Lovozero observatory. A conclusion is drawn that the subauroral spots in the proton emission projected into the magnetosphere near the plasmapause are two-dimensional images at the ionospheric “screen” of the region of intense scattering of energetic protons into the loss cone at the development of an ion-cyclotron instability.  相似文献   
525.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.  相似文献   
526.
527.
We summarize the high-resolution science that has been done on high redshift galaxies with Adaptive Optics (AO) on the world’s largest ground-based facilities and with the Hubble Space Telescope (HST). These facilities complement each other. Ground-based AO provides better light gathering power and in principle better resolution than HST, giving it the edge in high spatial resolution imaging and high resolution spectroscopy. HST produces higher quality, more stable PSF’s over larger field-of-views in a much darker sky-background than ground-based AO, and yields deeper wide-field images and low-resolution spectra than the ground. Faint galaxies have steadily decreasing sizes at fainter fluxes and higher redshifts, reflecting the hierarchical formation of galaxies over cosmic time. HST has imaged this process in great structural detail to z  6, and ground-based AO and spectroscopy has provided measurements of their masses and other physical properties with cosmic time. Last, we review how the 6.5 m James Webb Space Telescope (JWST) will measure First Light, reionization, and galaxy assembly in the near–mid-IR after 2013.  相似文献   
528.
Using the bulge data from AGN image decomposition with ground-based observations, we calculate the ratios of the central supermassive black hole mass(SMBH) to the Bulge mass (Mbh/MbulgeMbh/Mbulge) in a sample of X-ray selected AGNs, including 15 Narrow-line Seyfert 1 galaxies (NLS1s) and 18 broad-line Seyfert 1 galaxies (BLS1s). We found that the mean value of log(Mbh/Mbulge)log(Mbh/Mbulge) is -3.81±0.11-3.81±0.11 for 15 NLS1s, and -2.91±0.13-2.91±0.13 for 18 BLS1s, showing the lower Mbh/MbulgeMbh/Mbulge in NLS1s relative to BLS1s. The calculation shows that the Bulge mass from the host image decomposition in NLS1s is statistically smaller than that from Hubble-type correction method, and a linear mass relation is suggested for NLS1s and a nonlinear mass relation for BLS1s. The studying of host galaxies with ground-based observations strongly limited by the atmospheric seeing. We need to do the decomposition of host images for NLS1s with Hubble Space Telescope observation in the future.  相似文献   
529.
The X-ray spectrometer (XRS) on the SELENE (SELenological and ENgineering Explorer) spacecraft, XRS, will observe fluorescent X-rays from the lunar surface. The energy of the fluorescent X-ray depends on the elements of which the lunar soil consists, therefore we can determine elemental composition of the upper most lunar surface. The XRS consists of three components: XRF-A, SOL-B, and SOL-C. XRF-A is the main sensor to observe X-rays from the lunar surface. SOL-B is direct monitor of Solar X-ray using Si-PIN photodiode. SOL-C is another Solar X-ray monitor but observes the X-rays from the standard sample attached on the base plate. This enables us to analyze by a comparative method similar to typical laboratory XRF methods. XRF-A and SOL-C adopt charge coupled device as an X-ray detector which depletion layer is deep enough to detect X-rays. The X-ray spectra were obtained by the flight model of XRS components, and all components has been worked well to analyze fluorescent X-rays. Currently, development of the hardware and software of the XRS has been finished and we are preparing for system integration test for the launch.  相似文献   
530.
Lower-mesospheric inversion layers (MILs) were studied using the temperature profiles observed by TIMED/SABER over Cariri (7.5°S, 36.5°W), Brazil, in 2005. A total 175 MILs were identified with the maximum occurrence in April and October and the minimum in January and July. The lower MIL is located in a height region from 70 to 90 km, with the peak at around 83 ± 4 km with the temperature of 205 ± 5 K, and the thickness of 4–10 km. The results show large amplitudes of MILs during equinoxes and minimum in solstices, with a clear semiannual variation. A general feature of lower MIL in monthly mean profile was observed twice a year, one from February to May, and the other from August to October with a downward shift of the top level. These results suggest that formation and long persistence of MIL is an important factor to investigate propagation of atmospheric gravity waves in the mesosphere-lower thermosphere (MLT) region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号