首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2664篇
  免费   2篇
  国内免费   19篇
航空   1317篇
航天技术   1051篇
综合类   10篇
航天   307篇
  2019年   18篇
  2018年   24篇
  2017年   18篇
  2016年   17篇
  2014年   47篇
  2013年   58篇
  2012年   51篇
  2011年   82篇
  2010年   60篇
  2009年   104篇
  2008年   157篇
  2007年   63篇
  2006年   66篇
  2005年   69篇
  2004年   79篇
  2003年   80篇
  2002年   51篇
  2001年   75篇
  2000年   49篇
  1999年   63篇
  1998年   80篇
  1997年   49篇
  1996年   61篇
  1995年   78篇
  1994年   76篇
  1993年   49篇
  1992年   61篇
  1991年   31篇
  1990年   30篇
  1989年   70篇
  1988年   26篇
  1987年   28篇
  1986年   30篇
  1985年   120篇
  1984年   68篇
  1983年   57篇
  1982年   58篇
  1981年   103篇
  1980年   34篇
  1979年   26篇
  1978年   24篇
  1977年   28篇
  1976年   18篇
  1975年   31篇
  1974年   19篇
  1973年   25篇
  1972年   20篇
  1971年   16篇
  1970年   24篇
  1969年   26篇
排序方式: 共有2685条查询结果,搜索用时 15 毫秒
61.
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.  相似文献   
62.
63.
In this paper, response of low latitude ionosphere to a moderate geomagnetic storm of 7–8 May 2005 (SSC: 1920 UT on 7 May with Sym-H minimum, ∼−112 nT around 1600 UT on 8 May) has been investigated using the GPS measurements from a near EIA crest region, Rajkot (Geog. 22.29°N, 70.74°E, Geomag.14°), India. We found a decrease in total electron content (TEC) in 12 h after the onset of the storm, an increase during and after 6 h of Sym-H deep minimum with a decrease below its usual-day level on the second day during the recovery phase of the storm. On 8 May, an increase of TEC is observed after sunset and during post-midnight hours (maximum up to 170%) with the formation of ionospheric plasma bubbles followed by a nearly simultaneous onset of scintillations at L-band frequencies following the time of rapid decrease in Sym-H index (−30 nT/h around 1300 UT).  相似文献   
64.
We present an analysis of seven clusters observed by XMM-Newton as part of our survey of 17 most X-ray luminous clusters of galaxies at z  0.2 selected for a comprehensive and unbiased study of the mass distribution in massive clusters. Using the public software FTOOLS and XMMSAS we have set up an automated pipeline to reduce the EPIC MOS and pn spectro-imaging data, optimized for extended sources analysis. We also developped a code to perform intensive spectral and imaging analysis particularly focussing on proper background estimate and removal. XMM-Newton deep spectro-imaging of these clusters allowed us to fit a standard β-model to their gas emission profiles as well as a standard MEKAL emission model to their extracted spectra, and test their inferred characteristics against already calibrated relations.  相似文献   
65.
66.
Future space missions aiming at the accurate measurement of cold plasmas and DC to very low frequency electric fields will require that the potential of their conductive surfaces be actively controlled to be near the ambient plasma potential. In the near-Earth space these spacecraft are usually solar-cell powered; consequently, parts of their surface are most of the time exposed to solar photons. Outside the plasmasphere, a positive surface potential due the dominance of surface-emitted photoelectrons over ambient plasma electrons is to be expected. Photo- and ambient electrons largely determine the potential and positive values between a few Volts up to 100 V have been observed. Active ion emission is the obvious solution of this problem. A liquid metal ion emitter and a saddle field ion emitter are nearing the stage of flight unit fabrication. We will attempt to clamp the spacecraft potential to values close to the plasma potential. We present first results from vacuum chamber tests and describe the emission behaviour and characteristics of emitters producing, respectively, In+ and N2+ beams with an energy of ≥ 5 keV.  相似文献   
67.
68.
We summarize the high-resolution science that has been done on high redshift galaxies with Adaptive Optics (AO) on the world’s largest ground-based facilities and with the Hubble Space Telescope (HST). These facilities complement each other. Ground-based AO provides better light gathering power and in principle better resolution than HST, giving it the edge in high spatial resolution imaging and high resolution spectroscopy. HST produces higher quality, more stable PSF’s over larger field-of-views in a much darker sky-background than ground-based AO, and yields deeper wide-field images and low-resolution spectra than the ground. Faint galaxies have steadily decreasing sizes at fainter fluxes and higher redshifts, reflecting the hierarchical formation of galaxies over cosmic time. HST has imaged this process in great structural detail to z  6, and ground-based AO and spectroscopy has provided measurements of their masses and other physical properties with cosmic time. Last, we review how the 6.5 m James Webb Space Telescope (JWST) will measure First Light, reionization, and galaxy assembly in the near–mid-IR after 2013.  相似文献   
69.
The pivotal role played by the interplanetary magnetic field (B) in modulating galactic cosmic ray (GCR) intensity in the heliosphere is described. We show that the inverse correlation observed by Forbush (1958) between GCRs and sunspot numbers (SSNs) is reflected in high correlation between SSNs and B (cc = 0.94). The SSN data are available since 1700 and the derived B data since 1835. The paleo-cosmic ray data are available for several millennia in the form of 10Be radionuclide sequestered in polar ice. The data of the ion chambers (ICs) at the Cheltenham–Fredericksburg–Yakutsk (CFY) sites are combined to create a data string for 1937–1988. In turn, these data are used to extend the measurements of the low energy GCR ions (>0.1 GeV) at balloon altitudes at high latitudes in Russia to 1937. These data are then correlated to B and the fit parameters are used to extend the low energy ion data to 1900, creating the instrumental era GCR time series for the twentieth century. The derived GCR time series is compared to 10Be measured at two sites in Greenland, namely Dye 3 and NGRIP for 1900–2000 to check the internal consistency of datasets for the long-term trend. We find that the annual mean rate (%) for 1965 at NGRIP is an outlier. We replace it with the mean of 1964 and 1965 rates and construct a new re-normalized time series at NGIP, improving the agreement with the derived instrumental era GCR time series for the twentieth century as well. This should encourage its use by heliophysics community for varied applications.  相似文献   
70.
Biochips might be suited for planetary exploration. Indeed, they present great potential for the search for biomarkers – molecules that are the sign of past or present life in space – thanks to their size (miniaturized devices) and sensitivity. Their detection principle is based on the recognition of a target molecule by affinity receptors fixed on a solid surface. Consequently, one of the main concerns when developing such a system is the behavior of the biological receptors in a space environment. In this paper, we describe the preparation of an experiment planned to be part of the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility, outside the International Space Station (ISS), in order to study the resistance of biochip models to space constraints (especially cosmic radiation and thermal cycling). This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters. Indeed, contrary to ground experiments where constraints are applied individually and in a limited time, the biochip models on the ISS will be exposed to cumulated constraints during several months. Finally, this ISS experiment is a necessary step towards planetary exploration as it will help assessing whether a biochip can be used for future exploration missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号