首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5336篇
  免费   25篇
  国内免费   32篇
航空   2607篇
航天技术   1960篇
综合类   14篇
航天   812篇
  2021年   35篇
  2019年   37篇
  2018年   71篇
  2017年   60篇
  2016年   55篇
  2014年   105篇
  2013年   136篇
  2012年   125篇
  2011年   174篇
  2010年   121篇
  2009年   213篇
  2008年   264篇
  2007年   141篇
  2006年   120篇
  2005年   144篇
  2004年   150篇
  2003年   167篇
  2002年   113篇
  2001年   174篇
  2000年   100篇
  1999年   123篇
  1998年   150篇
  1997年   93篇
  1996年   146篇
  1995年   170篇
  1994年   167篇
  1993年   94篇
  1992年   119篇
  1991年   60篇
  1990年   58篇
  1989年   135篇
  1988年   51篇
  1987年   50篇
  1986年   58篇
  1985年   182篇
  1984年   142篇
  1983年   116篇
  1982年   111篇
  1981年   177篇
  1980年   51篇
  1979年   47篇
  1978年   51篇
  1977年   47篇
  1976年   32篇
  1975年   55篇
  1974年   40篇
  1973年   42篇
  1972年   40篇
  1970年   41篇
  1969年   43篇
排序方式: 共有5393条查询结果,搜索用时 125 毫秒
301.
302.
Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, −20, and −80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.  相似文献   
303.
This paper is a follow-on of that of Krüger et al. [Krüger, H., Moraal, H., Bieber, J.W., Clem, J.M., Evenson, P.A., Pyle, K.R., Duldig, M.L., Humble, J.E. A calibration neutron monitor: energy response and instrumental temperature sensitivity. J. Geophys. Res. 113, A08101, doi:10.1029/2008JA013229, 2008], that describes the characteristics of a pair of calibration neutron monitors that were developed to intercalibrate the count rates of the world’s neutron monitors against each other. Such an intercalibration will allow the calculation of energy (rigidity) spectra, which will enhance the quality of the neutron monitor data. Krüger et al. (2008) investigated the energy and temperature response of the calibrators. This paper studies the statistical accuracy of the calibration procedure, its repeatability, and the sensitivity to its environment. The paper concludes with a calibration procedure that can minimise the uncertainties caused by these five effects, or at least correct for them.  相似文献   
304.
We are developing fast photon-counter instruments to study the rapid variability of astrophysical sources by time tagging photon arrival times with unprecedented accuracy, making use of a Rubidium clock and GPS receiver. The first realization of such optical photon-counters, dubbed AquEYE (the Asiago Quantum Eye), was mounted in 2008 at the 182 cm Copernicus Observatory in Asiago. AquEYE observed the Crab pulsar several times and collected data of extraordinary quality that allowed us to perform accurate optical timing of the Crab pulsar and to study the pulse shape stability on a timescale from days to years with an excellent definition. Our results reinforce the evidence for decadal stability of the inclination angle between the spin and magnetic axis of the Crab pulsar. Future realizations of our instrument will make use of the Galileo Global Navigation Satellite System (GNSS) time signal.  相似文献   
305.
Solar modulations of galactic cosmic ray (GCR) intensity contain a wealth of information about their transport in the heliosphere. To extract this information from the data one studies the dependence of the observed modulations on the mean energy of response of detectors providing data for the analyses. There is a great deal of confusion about the detector energy response to GCR spectrum in the literature. We present a preliminary report on the computations of the mean energy of response for the Climax neutron monitor (CL/NM) and IMP 8 cosmic ray nuclear composition instrument to GCR protons for 1973–1998, covering the solar cycles 21 and 22. We find that for penetrating proton channel on IMP 8 the mean energy changes by a factor of over two whereas for the neutron monitor the change is only 21%. However, the corresponding change for the computed modulation function is a factor of about 3.5.  相似文献   
306.
Fahr  H. J.  Neutsch  W.  Grzedzielski  S.  Macek  W.  Ratkiewicz-Landowska  R. 《Space Science Reviews》1986,43(3-4):329-381
Existing heliopause models are critically rediscussed under the new aspect of possible plasma mixing between the solar wind and the ambient ionized component of the local interstellar medium (LISM). Based on current kinetic plasma theories, effective diffusion rates across the heliopause are evaluated for several models with turbulence caused by electrostatic or electromagnetic interactions that could be envisaged in this context. Some specific cases that may lead to high diffusion rates are investigated, especially in regard to their LISM magnetic field dependence.For weak fields (less than 10–7 G), macroscopic hydrodynamic instabilities, such as of Rayleigh-Taylor or Kelvin-Helmholtz-types, can be excited. The resulting plasma mixing rates at the heliopause may amount to 20–30% of the impinging mass flow.Recently, an unconventional new approach to the problem for the case of tangential magnetic fields at the heliopause was published in which a continuous change of the plasma properties within an extended boundary layer is described by a complete set of two-fluid plasma equations including a hybrid MHD-formulation of wave-particle interaction effects. If a neutral sheet is assumed to exist within the boundary layer, the magnetic field direction is proven to be constant for a plane-parallel geometry. Considering the electric fields and currents in the layer, an interesting relationship between the field-reconnection probability and the electric conductivity can be derived, permitting a quantitative determination of either of these quantities.An actual value for the electrical conductivity is derived here on the basis of electron distribution functions given by a superposition of Maxwellians with different temperatures. Using two-stream instability theory and retaining only the most unstable modes, an exact solution for the density, velocity, and magnetic and electric fields can be obtained. The electrical conductivity is then shown to be six orders of magnitude lower than calculated by conventional formulas. Interestingly, this leads to an acceptable value of 0.1 for the reconnection coefficient.By analogy with the case of planetary magnetopauses, it is shown here for LISM magnetic fields of the order of 10–6 G or larger that field reconnection processes may also play an important role for the plasma mixing at the heliopause. The resulting plasma mixing rate is estimated to amount to an average value of 10% of the incident mass flow. It is suggested here that the dependence of the cosmic-ray penetration into the heliosphere on the distribution of reconnecting areas at the heliopause may provide a means of deriving the strength and orientation of the LISM field.A series of observational implications for the expected plasma mixing at the heliopause is discussed in the last part of the paper. In particular, consequences are discussed for the generation of radio noise at the heliopause, for the penetration of LISM neutrals into the heliosphere, for the propagation of cosmic rays towards the inner part of the solar system and for convective electric field mergings into the heliosphere during the course of the solar cycle, depending on the solar cycle variations. With concern to a recent detection of electrostatic plasma waves by plasma receivers on Voyagers 1 and 2, we come to an interesting alternate explanation: the heliopause, rather than the heliospheric shock front, could be responsible for the generation of these waves.  相似文献   
307.
308.
309.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   
310.
Coronal mass ejections and post-shock streams driven by them are the most efficient drivers of strong magnetospheric activity, magnetic storms. For this reason there is considerable interest in trying to make reliable forecasts for the effects of CMEs as much in advance as possible. To succeed this requires understanding of all aspects related to CMEs, starting from their emergence on the Sun to their propagation to the vicinity of the Earth and to effects within the magnetosphere. In this article we discuss some recent results on the geoeffectivity of different types of CME/shock structures. A particularly intriguing observation is that smoothly rotating magnetic fields within CMEs are most efficient in driving storm activity seen in the inner magnetosphere due to enhanced ring current, whereas the sheath regions between the shock and the ejecta tend to favour high-latitude activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号