首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   0篇
  国内免费   1篇
航空   72篇
航天技术   39篇
综合类   1篇
航天   29篇
  2021年   3篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   11篇
  2012年   4篇
  2011年   9篇
  2010年   5篇
  2009年   8篇
  2008年   4篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1982年   2篇
  1980年   2篇
  1972年   1篇
  1970年   2篇
  1968年   5篇
  1967年   1篇
  1966年   2篇
  1963年   2篇
排序方式: 共有141条查询结果,搜索用时 421 毫秒
11.
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.  相似文献   
12.
Life before RNA     
The hypothesis that life originated and evolved from linear informational molecules capable of facilitating their own catalytic replication is deeply entrenched. However, widespread acceptance of this paradigm seems oblivious to a lack of direct experimental support. Here, we outline the fundamental objections to the de novo appearance of linear, self-replicating polymers and examine an alternative hypothesis of template-directed coding of peptide catalysts by adsorbed purine bases. The bases (which encode biological information in modern nucleic acids) spontaneously self-organize into two-dimensional molecular solids adsorbed to the uncharged surfaces of crystalline minerals; their molecular arrangement is specified by hydrogen bonding rules between adjacent molecules and can possess the aperiodic complexity to encode putative protobiological information. The persistence of such information through self-reproduction, together with the capacity of adsorbed bases to exhibit enantiomorphism and effect amino acid discrimination, would seem to provide the necessary machinery for a primitive genetic coding mechanism.  相似文献   
13.
Previous calculations of the accumulation of small (∼10 km) planetesimals at ∼1 AU to form Mars-sized bodies assumed that the initial assemblage of planetesimals were all present at the outset. This is an obviously reasonable assumption in systems in which the time scale for growth time of ∼1026 g planetary bodies is long compared to estimates of the evolutionary time scale of a protosolar disk, as was the case in the pioneering work of Safronov (1969). It is now found that as a result of the preplanetary assemblage being unstable with respect to the runaway growth of the largest bodies, this is unlikely to be the case. The more realistic alternative of adding the initial planetesimals on a ∼105 year time scale is considered here, as well as the consequences of the initial planetesimals being considerably smaller than those assumed previously. It is found that although the time scale for runaway growth is now actually controlled by the availability of planetesimals, for planetesimal production time scales of ∼105 yrs, the final consequences are very similar. These calculations do show, however, that as a consequence of continuous infall during the runaway growth process, the late initial planetesimals are likely to be catastrophically disrupted by mutual collisions. For this reason, a more detailed treatment of the growth of planetesimals into planetary embryos will require a better understanding of the difficult problem of formation of the initial planetesimals themselves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
14.
Space flight results in the exposure of astronauts to a mixed field of radiation composed of energetic particles of varying energies, and biological indicators of space radiation exposure provides a better understanding of the associated long-term health risks. Current methods of biodosimetry have employed the use of cytogenetic analysis for biodosimetry, and more recently the advent of technological progression has led to advanced research in the use of genomic and proteomic expression profiling to simultaneously assess biomarkers of radiation exposure. We describe here the technical advantages of the Luminex(TM) 100 system relative to traditional methods and its potential as a tool to simultaneously profile multiple proteins induced by ionizing radiation. The development of such a bioassay would provide more relevant post-translational dynamics of stress response and will impart important implications in the advancement of space and other radiation contact monitoring.  相似文献   
15.
Attention is called to the importance of including the roles of cosmic dust particles and rocket exhaust particles in the detailed analysis of spacecraft charging effects, arcing and power drains due to leakage currents. Aspects of the problem pertaining to both low and high (geosynchronous) Earth orbit are discussed. Recommendations are made to assessing the long-term effects of hypervelocity impacts of these particles.  相似文献   
16.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
17.
Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed.  相似文献   
18.
Building an organization and management structure to create, launch, utilize and protect a satellite solar power energy system will require a global policy for the beneficial use of SSP. The fundamental organizational tasks are: (1) R&D, achieved through a project organization characterized by the integrated management of applied science, development research and construction engineering; (2) investment, generated by a series of groups creating financial vehicles for public and private investment; (3) transmission and distribution, characterized by attention to an engineering and maintenance process emphasizing high reliability; and (4) crisis response, demanding readiness for instant response to potential internal or external scenarios. A differentiated global organization spanning the long timeframe of SSP will need to have a central management core representative of all parts of the organization, with the capacity for self-renewal and re-adaptation. To be successful over its long timeframe, the SSP organization will need to build continuity and public confidence through intergenerational communication, public education, and community outreach. Integrating structures must be created at all levels of the organization, and should encompass joint work tasks and information-sharing among both industrial and government members. Developmental and alliance partners who support the formation and financing of a differentiated satellite solar power organization will share commensurately in the technologies and competencies that are created.  相似文献   
19.
First recognized by Wu and Lee (Ap. J. 230, 621, 1979), electron-cyclotron masers can be activated under very mild conditions. Large growth rates can occur even for relatively mild anisotropies in the electron velocity distribution, e.g., the one-sided loss cones that commonly occur when electrons with small pitch angles precipitate into high density regions at the footpoints of flaring loops while others are reflected in the converging field in the corona. Maser action can plausibly occur at the second harmonic of the local gyrofrequency and so explain certain very bright (? 1010 K) microwave bursts from the sun and other stars. However, the preponderance of the energy is at the first harmonic.We suggest that masers operating at the local gyrofrequency in a flaring loop generate radiation at decimeter wavelengths that is a significant fraction of the total energy of the flare, in fact (and not coincidentally) comparable with the energy in electrons associated with hard X-ray bursts. Essentially all of the radio energy is trapped in the corona and serves to produce localized heating in a volume large compared with the energy release region. Thus it can transfer energy by radiation from one magnetic loop to another, possibly inducing further instabilities, and spreading the course of the flare. Eventually the energy probably escapes the corona as soft X-rays. The electron-cyclotron maser saturates by extracting the perpendicular energy of the electrons, thereby diffusing them into the loss cone at the maximum possible rate; the enhanced precipitation into the footpoints can produce bright emission in hard X-rays, EUV and Hα and remove any necessity for directive acceleration in the energy release region.Details of the proposed mechanism and effects are contained in two papers by Melrose and Dulk (Ap. J. 259, 1982).This work was sponsored by NASA under grants NAGW-91 and NSG-7287 to the University of Colorado.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号