首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   0篇
航空   133篇
航天技术   38篇
航天   27篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   4篇
  2018年   13篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   12篇
  2008年   9篇
  2007年   12篇
  2006年   13篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1985年   4篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有198条查询结果,搜索用时 31 毫秒
91.
The general scientific objective of the ASPERA-3 experiment is to study the solar wind – atmosphere interaction and to characterize the plasma and neutral gas environment with within the space near Mars through the use of energetic neutral atom (ENA) imaging and measuring local ion and electron plasma. The ASPERA-3 instrument comprises four sensors: two ENA sensors, one electron spectrometer, and one ion spectrometer. The Neutral Particle Imager (NPI) provides measurements of the integral ENA flux (0.1–60 keV) with no mass and energy resolution, but high angular resolution. The measurement principle is based on registering products (secondary ions, sputtered neutrals, reflected neutrals) of the ENA interaction with a graphite-coated surface. The Neutral Particle Detector (NPD) provides measurements of the ENA flux, resolving velocity (the hydrogen energy range is 0.1–10 keV) and mass (H and O) with a coarse angular resolution. The measurement principle is based on the surface reflection technique. The Electron Spectrometer (ELS) is a standard top-hat electrostatic analyzer in a very compact design which covers the energy range 0.01–20 keV. These three sensors are located on a scanning platform which provides scanning through 180 of rotation. The instrument also contains an ion mass analyzer (IMA). Mechanically IMA is a separate unit connected by a cable to the ASPERA-3 main unit. IMA provides ion measurements in the energy range 0.01–36 keV/charge for the main ion components H+, He++, He+, O+, and the group of molecular ions 20–80 amu/q. ASPERA-3 also includes its own DC/DC converters and digital processing unit (DPU).  相似文献   
92.
Protoplanetary evolution is discussed in both its global and local aspects. The global turbulent evolution implies large scale average chemical fractionation and chondrule-sized grains as the building blocks of planetary and possibly also cometary material. Local processes such as electric discharges and associated flash heating of grains allow for chemical, mineralogical, and morphological alterations of the disk material. Large scale turbulence keeps the disk well stirred, however, time dependent (or intermittent) turbulence, associated with e.g. optical depth variations, could lead to dust sedimentation within the disk and subsequent planetesimal formation. Recent relevant astronomical observations of young T Tauri stars are briefly reviewed.  相似文献   
93.
94.
The “VIS-channel” (the channel is sensitive between about .4 and 1.1 μm wavelength) of the European geostationary satellite Meteosat-2 is calibrated by the method of “vicarious calibration by means of calculated radiances”. The calibration constant, which connects the 6-bit-counts of the VIS-channel of the Meteosat-2 with the corresponding “effective radiances” is determined to be cSAT = 2.3 W·m?2·sr?1/count with an accuracy of ± 10% (preliminary values). The calibration constant is valid for “gain 0” and the period until October 1981. The result means, that the VIS-channel of Meteosat-2 at the beginning of its lifetime is about 15% more sensitive than that of Meteosat-1 was at its end.  相似文献   
95.
96.
The magnitude, dissipation mechanism, and spatial distribution of the solar wind - magnetospheric energy source are discussed briefly. Using N2 measurements of the ESRO 4 satellite, the temperature increase in the polar thermosphere associated with this energy source are investigated. Part of the locally dissipated energy is transported toward lower latitudes. Possible modes of energy transfer are reviewed, and local time variations are documented. Some suggestions are made with respect to future empirical models of the thermosphere.  相似文献   
97.
This paper presents the Sixth Catalogue of galactic Wolf-Rayet stars (Pop. I), a short history on the five earlier WR catalogues, improved spectral classification, finding charts, a discussion on related objects, and a review of the current status of Wolf-Rayet star research.The appendix presents a bibliography on most of the Wolf-Rayet literature published since 1867.Visiting astronomer, Kitt Peak National Observatory and Cerro Tololo Inter-American Observatory.Visiting astronomer, European Southern Observatory.  相似文献   
98.
One of the most characteristic features of the summer mesopause at high latitudes is the very low temperature. Earlier measurements have shown temperatures in the range down to 135 K around 86 km altitude, whereas the most recent in situ measurements have revealed temperatures still much lower than that in a rather wide altitude region. The reasons for these low temperatures are to be found in the dynamics of the strato- and mesospheres. Upwinds and gravity wave activity over the summer hemisphere cause efficient cooling of the atmosphere.Also other effects are caused by the updrafts. The vertical transport velocity for important minor constituents is increased, which for instance causes the concentration of water vapor around the mesopause to be enhanced by large factors. This situation is of major importance for the possibility of forming noctilucent clouds (NLC).NLC are believed to be composed of small water ice particles, which because of the low temperatures can be formed on existing condensation nuclei. Two of the main questions regarding the formation of NLC concern the water vapor budget of the upper mesosphere and the origin of the condensation nuclei.This paper gives a general introduction to mesospheric physics and composition. Some results from recent satellite and rocket experiments are reviewed and the campaign layout and the performed experiments within the MAP project CAMP are described. The results from the different experiments are presented in four accompanying papers on CAMP results.  相似文献   
99.
The Interstellar Boundary Explorer (IBEX) is a small explorer mission that launched on 19 October 2008 with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium. IBEX is designed to achieve this objective by answering four fundamental science questions: (1) What is the global strength and structure of the termination shock, (2) How are energetic protons accelerated at the termination shock, (3) What are the global properties of the solar wind flow beyond the termination shock and in the heliotail, and (4) How does the interstellar flow interact with the heliosphere beyond the heliopause? The answers to these questions rely on energy-resolved images of energetic neutral atoms (ENAs), which originate beyond the termination shock, in the inner heliosheath. To make these exploratory ENA observations IBEX carries two ultra-high sensitivity ENA cameras on a simple spinning spacecraft. IBEX’s very high apogee Earth orbit was achieved using a new and significantly enhanced method for launching small satellites; this orbit allows viewing of the outer heliosphere from beyond the Earth’s relatively bright magnetospheric ENA emissions. The combination of full-sky imaging and energy spectral measurements of ENAs over the range from ~10 eV to 6 keV provides the critical information to allow us to achieve our science objective and understand this global interaction for the first time. The IBEX mission was developed to provide the first global views of the Sun’s interstellar boundaries, unveiling the physics of the heliosphere’s interstellar interaction, providing a deeper understanding of the heliosphere and thereby astrospheres throughout the galaxy, and creating the opportunity to make even greater unanticipated discoveries.  相似文献   
100.
The Interstellar Boundary Explorer (IBEX) mission will provide maps of energetic neutral atoms (ENAs) originating from the boundary region of our heliosphere. On IBEX there are two sensors, IBEX-Lo and IBEX-Hi, covering the energy ranges from 10 to 2000 eV and from 300 to 6000 eV, respectively. The expected ENA signals at 1 AU are low, therefore both sensors feature large geometric factors. In addition, special attention has to be paid to the various sources of background that may interfere with our measurement. Because IBEX orbits the Earth, ion, electron, and ENA populations of the Earth’s magnetosphere are prime background sources. Another potential background source is the magnetosheath and the solar wind plasma when the spacecraft is outside the magnetosphere. UV light from the night sky and the geocorona have to be considered as background sources as well. Finally background sources within each of the sensors must be examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号