首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   503篇
  免费   168篇
  国内免费   101篇
航空   426篇
航天技术   145篇
综合类   38篇
航天   163篇
  2024年   8篇
  2023年   14篇
  2022年   41篇
  2021年   43篇
  2020年   43篇
  2019年   43篇
  2018年   39篇
  2017年   40篇
  2016年   30篇
  2015年   32篇
  2014年   31篇
  2013年   29篇
  2012年   54篇
  2011年   52篇
  2010年   31篇
  2009年   41篇
  2008年   33篇
  2007年   33篇
  2006年   31篇
  2005年   29篇
  2004年   24篇
  2003年   13篇
  2002年   9篇
  2001年   16篇
  2000年   9篇
  1999年   4篇
排序方式: 共有772条查询结果,搜索用时 15 毫秒
101.
吸气式空天飞行器的一体化性能随扰动变化的敏感性高,在高马赫数飞行条件下,有必要开展流-固-推进耦合性能分析。针对机体/推进一体化布局的吸气式飞行器,明确一体化部件之间的耦合关系和耦合问题,利用CFD、有限元和准一维流方法,结合本征正交分解(Proper Orthogonal Decomposition,POD)降阶手段,建立吸气式空天飞行器流-固-推进多物理场耦合快速分析方法,并开展多场耦合特性分析。结果表明:(1)进气道压缩面的流-固耦合导致出口静压的最大振荡振幅约为平均静压的21.6%,而出口马赫数的最大振幅约为平均马赫数的8.45%。(2)进气道出口性能的振荡会影响发动机的推力性能,导致推力振荡幅值可达平均值的31%,且随着时间的推移,会在进气道外压缩流场产生大量的气动涡,涡结构进入进气道后会导致进气道出口性能的持续下降,进一步削弱了发动机的平均推力性能。  相似文献   
102.
叶片式预旋喷嘴具有尺寸小,落后角大的特点。为了详细研究小尺寸预旋喷嘴的预旋性能,采用五孔探针对叶片式预旋喷嘴的出口流场进行了实验研究。测量了Ma=0.2,0.3时喷嘴出口的压力分布、速度分布和出口气流角度分布,实验获得了喷嘴的落后角和预旋效率,并进行了与实验工况相同的数值计算。通过实验获得的总压云图以及速度云图,可以发现叶片式预旋喷嘴的端壁二次流损失、尾迹损失严重,有明显的边界层分离现象。Ma=0.2时,喷嘴Re数为5.76×104,落后角2.84°,实验测得的预旋效率为0.73;Ma=0.3时,喷嘴Re数为1.06×105,预旋效率提高至0.77。实验模型端壁的影响使预旋效率实验结果偏低6.5%左右。数值结果与实验测得各参数符合较好:数值结果与测得的喷嘴出口截面平均总压、静压偏差在1%以内;出气速度、周向速度以及出气角度与实验结果偏差在4%以内。数值计算表明,叶片式预旋喷嘴的预旋效率基本不受压比影响,随Re数增大先增大后基本不变,最后基本稳定在0.85。  相似文献   
103.
以树脂传递模塑(RTM)用6818高温环氧树脂体系的化学流变特性研究为目的,以差示扫描量热法(DSC)和黏度实验为基础,采用外推法初步确定了6818树脂体系的固化工艺制度。依据双阿累尼乌斯方程建立了树脂体系的化学流变模型,模型曲线与实验数据的吻合性良好。模型分析表明,在80~100℃内树脂体系黏度低于200 mPa·s的时间大于12 h,可以作为6818树脂比较理想的注胶温度。该模型能够反映6818树脂黏度变化规律,预报该树脂体系的RTM工艺窗口。  相似文献   
104.
周健  龚春林  粟华  张孝南  李波  谷良贤 《航空学报》2018,39(11):222223-222235
针对传统的飞行器设计与体系(SOS)设计相互独立造成的飞行器实际作战效能不足的问题,对同时考虑飞行器与体系耦合设计的飞行器体系优化设计问题展开研究。首先,根据体系工程(SOSE)原理给出了耦合飞行器设计与体系结构设计的飞行器体系优化设计问题的基本概念与通用数学定义;其次,基于多层体系架构,构建了飞行器体系设计优化模型,提出了包含问题定义、体系架构建模、学科建模、优化求解4个步骤的通用建模求解流程;最后,以巡飞/精确打击武器协同作战为例,构建了面向任务成本最低、时间最短的协同作战体系最优化问题并对其进行优化求解。与先设计飞行器后设计体系结构的解耦设计结果对比表明,解耦优化设计忽略了体系结构与飞行器的强耦合特征,无法最优化体系效能;耦合优化设计能够获得体系效能最大化的飞行器设计方案。  相似文献   
105.
根据飞机设计阶段对航空发动机性能仿真简便、快速和有效的要求,在基于定部件效率的航空发动机性能仿真方法基础上,对航空发动机部件进行通用性建模,并采用面向对象技术构建通用航空发动机性能仿真系统。采用定部件效率模型对航空发动机性能进行仿真,降低了航空发动机性能仿真过程的专业性要求;同时,采用面向对象技术建立通用的航空发动机性能仿真系统,提高了仿真代码的重用性及仿真系统的适用性。利用该仿真系统建立双转子混排涡扇发动机和自由涡轮式单转子涡轮螺旋桨发动机仿真对象模型,并对某型双转子混排涡扇发动机稳态特性进行仿真,验证了仿真系统的有效性。  相似文献   
106.
地面动力常常需要改进利用航空燃气轮机技术,为了研究燃气轮机燃烧室在低工况下使用柴油燃料的燃烧效率问题,采用燃气分析试验方法,对燃气轮机燃烧室在不同进口总温、空气流量和油气比等工况下的燃烧效率进行了研究。结果表明:油气比较低时,燃烧区温度低,燃烧不完全导致燃烧效率急剧下降,随着燃烧室油气比的增加,燃烧效率逐渐接近100%;进口空气流量以及进口总温的增加会提高空气雾化喷嘴的雾化能力以及燃烧温度,燃烧更加充分完全,燃烧效率由96%左右提高至99%以上;总结归纳得到了适用于柴油燃料的燃烧效率预估经验关系式。  相似文献   
107.
轴流压气机引气后流场的数值模拟   总被引:1,自引:0,他引:1  
选取了NASA Stage 35作为算例进行压气机引气数值模拟研究.通过对比验证了网格无关性和计算的准确性,应用两种数值实现方法分别进行圆孔和槽引气计算,两种数值方法的结果基本吻合.进行了两种引气方式(即圆孔和槽)的对比.结果表明:槽引气转子出口总压损失小,效果好于圆孔引气.应用NUMECA软件自带引气模块操作简单,容易实现.绘制引气管路网格增加了流道网格绘制的难度和计算边界条件设置的复杂度,但更加符合压气机实际的引气情况.引气后压气机效率 流量曲线整体上移,总压比 流量曲线下降,失速裕度有较大提升.   相似文献   
108.
采用稳态热分析与动态接触力学分析相结合的方法以提高计算精度,考虑轴承摩擦生热及瞬态冲击效应的影响,得到经热应力修正的轴承应力分布及变化特征。研究表明:最大动态接触应力位于钢球表面,外圈滚道次之,内圈滚道最小;轴承接触应力具有明显动态冲击响应特性,分布及大小具有随机变化性;接触应力由主应力与剪切应力共同构成,随转速及轴向载荷增大而增大。   相似文献   
109.
针对全球导航卫星系统(GNSS)拒止环境下无人飞行器集群成员间的相对定位问题,研究了一种基于机载惯性测量单元(IMU)、气压高度计与数据链测距组合的初始相对位姿求解算法。首先,在高度计稳定输出较为精确的高度信息的前提下,将飞行器的三维运动解耦成二维水平运动,给出了三维加速度和角速度、测距信息的水平坐标系投影等效模型。在此基础上,以待求量相对位置和航向角的非线性形式构造了新的待求状态量,并将相对位置和航向角的非线性求解问题转化成了新状态量的线性模型最小二乘求解问题。然后,通过引入递推最小二乘算法(RLS),建立了该相对位姿求解算法的实时输出递推形式,有效降低了机载在线计算的负载。接着,对所提算法进行了可观测性分析,并给出了使系统状态量不可观测的几种相对运动形式。最后,对所提算法进行了数值仿真实验,仿真结果表明,该算法能够有效、快速求解初始相对位姿,位置误差在初始相对距离的10%以内,航向角误差在初始相对角度的1%以内。  相似文献   
110.
龚科瑜  冯宇  吴坤  秦江  周超英 《推进技术》2022,43(6):158-169
为了探究再生冷却过程中,浮升力对竖直圆管内超临界碳氢燃料裂解传热传质特性的影响,基于详细裂解反应动力学模型,建立了同时考虑碳氢燃料流动传热和裂解吸热的耦合算法,在此基础上对竖直管道内,浮升力对超临界RP-3的流动、传热和裂解反应的影响展开了数值研究。计算结果表明:与不考虑浮升力的情况相比,在浮升力影响显著的条件下,浮升力增强了向下流动的碳氢燃料壁面处与中心流区域的传热传质过程,燃料温度和裂解率的径向分布更加均匀,燃料吸热能力增强,换热系数上升,同时可以有效地抑制管道壁面上结焦的生成;而对于向上流动的流体,浮升力不利于壁面处与中心流区域的传热传质,导致冷却通道内碳氢燃料温度和裂解率径向分布的不均匀性增强,燃料吸热能力降低,换热系数下降,同时增加了管道壁面上的结焦量;同时,为了更好地理解浮升力的影响,本文还对不同壁面热流密度下向上和向下冷却通道内超临界碳氢燃料的裂解传热特性进行了分析;判别式Bo*<6.0×10-7不能准确地预测竖直管道内浮升力对超临界碳氢燃料裂解换热的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号