首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7498篇
  免费   5篇
  国内免费   19篇
航空   3660篇
航天技术   2508篇
综合类   191篇
航天   1163篇
  2021年   51篇
  2018年   110篇
  2017年   73篇
  2016年   71篇
  2014年   127篇
  2013年   172篇
  2012年   164篇
  2011年   263篇
  2010年   182篇
  2009年   286篇
  2008年   323篇
  2007年   188篇
  2006年   143篇
  2005年   180篇
  2004年   199篇
  2003年   222篇
  2002年   243篇
  2001年   284篇
  2000年   138篇
  1999年   175篇
  1998年   222篇
  1997年   157篇
  1996年   181篇
  1995年   230篇
  1994年   239篇
  1993年   132篇
  1992年   173篇
  1991年   83篇
  1990年   92篇
  1989年   171篇
  1988年   81篇
  1987年   78篇
  1986年   78篇
  1985年   240篇
  1984年   190篇
  1983年   175篇
  1982年   167篇
  1981年   261篇
  1980年   80篇
  1979年   73篇
  1978年   80篇
  1977年   58篇
  1976年   62篇
  1975年   75篇
  1974年   62篇
  1973年   50篇
  1972年   81篇
  1971年   65篇
  1970年   46篇
  1969年   50篇
排序方式: 共有7522条查询结果,搜索用时 15 毫秒
171.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
172.
Hawkins  S.E.  Roelof  E.C.  Decker  R.B.  Ho  G.C.  Lario  D. 《Space Science Reviews》2001,97(1-4):269-272
We have performed a joint survey of anisotropic ≳40 keV electron events from August 1997 to September 2000 using the matched detectors on the Ulysses (ULS)/HI-SCALE and the ACE/EPAM instruments. A computer algorithm selected events with strong, statistically significant pitch-angle anisotropies. Electron pitch-angle distributions at ACE (∼1 AU) are often ‘beams’ that are strongly collimated along the local interplanetary magnetic field (IMF). These flare-associated impulsive injections can display rapid rise times (∼15 min) and slower decays, or more irregular intensity histories. At ULS, the electron intensities are lower and the time histories smoother, but strong anisotropies are still observable, indicating direct, nearly field-aligned propagation outward from the Sun. We focus on four event periods, selected from the survey, during times when the angle between the footpoints of the IMF lines intersecting ACE and ULS is small. These events span three full years and cover a wide range of distances and heliographic latitudes. We found one reasonably good association between impulsive electron events at ACE and ULS, and two events with small field-aligned gradients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
173.
Detecting moving targets in SAR imagery by focusing   总被引:1,自引:0,他引:1  
A new method for detecting moving targets in a synthetic aperture radar (SAR) image is presented. It involves segmenting a complex-valued SAR image into patches, focusing each patch separately, and measuring the sharpness increase in the focused patch. The algorithm is sensitive to azimuth velocities and is exquisitely sensitive to radial accelerations of the target, allowing it to detect motion in any direction. It is complementary to conventional Doppler-sensing moving target indicators, which can sense only the radial velocity of rapidly moving targets.  相似文献   
174.
We present the results from a study of the variations of the cosmic-ray intensity with time, heliographic latitude, and longitude, and for varying interplanetary conditions, using our three-dimensional, time-dependent computer code for cosmic-ray transport in the heliosphere. Our code also produces a solar-wind and interplanetary magnetic field (IMF) configuration which is compared with observations. Because of the fully threedimensional nature of the model calculations, we are able to model time variations which would be expected to be observed along Ulysses's trajectory as it moves to high latitudes. In particular we can model the approximately 13-and 26-day solar-rotation induced variations in cosmic rays, solar wind and IMF, as a function of increasing heliographic latitude, as one moves poleward of the interplanetary current sheet. Our preliminary model results seem to be in general form quite similar to published data, but depend on the physical parameters used such as cosmic-ray diffusion coefficients, boundary conditions, and the nature of the solar wind and IMF and current sheet.  相似文献   
175.
The magnetotail and substorms   总被引:5,自引:0,他引:5  
The tail plays a very active and important role in substorms. Magnetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary of the tail flares more, the field strength in the tail increases, and the currents strengthen and move closer to the Earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. At the onset of the expansion phase, the stored magnetic flux is returned from the tail and energy is deposited in the magnetosphere and ionosphere. During the expansion phase of isolated substorms, the flaring angle and the lobe field strength decrease, the plasma sheet thickens and more magnetic flux crosses the neutral sheet.In this review, we discuss the experimental evidence for these processes and present a phenomenological or qualitative model of the substorm sequence. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet. In order to remove the oversupply of magnetic flux in the tail, a neutral point forms in the near earth portion of the tail. If the new reconnection rate exceeds the dayside merging rate, then an isolated substorm results. However, a situation can occur in which dayside merging and tail reconnection are in equilibrium. The observed polar cap electric field and its correlation with the interplanetary magnetic field is found to be in accord with open magnetospheric models.  相似文献   
176.
Haines  K.  Hipkin  R.  Beggan  C.  Bingley  R.  Hernandez  F.  Holt  J.  Baker  T.  Bingham  R.J. 《Space Science Reviews》2003,108(1-2):205-216
Accurate local geoids derived from in situ gravity data will be valuable in the validation of GOCE results. In addition it will be a challenge to use GOCE data in an optimal way, in combination with in situ gravity, to produce better local geoid solutions. This paper discusses the derivation of a new geoid over the NW European shelf, and its comparison with both tide gauge and altimetric sea level data, and with data from ocean models. It is hoped that over the next few years local geoid methods such as these can be extended to cover larger areas and to incorporate both in situ and satellite measured gravity data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
177.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
178.
The magnetospheric O+ population in the 52–180 keV range during storms is investigated through the analysis of energetic neutral atom (ENA) images. The images are obtained from the high energy neutral atom (HENA) imager onboard the IMAGE satellite. At each substorm onset following the commencement of a geomagnetic storm the oxygen ENA display ~30 min intense bursts. Only very weak corresponding features in the 60–119 keV hydrogen ENA can be occasionally seen. The dominating fraction of the oxygen ENA emissions are produced when O+ ions mirror/precipitate at low altitudes, where the number density of the neutral atmosphere is high. During the storm we observed several bursts of oxygen ENA, but it is still not clear how much the O+ content of the ring current increases during the storm main phase. Our observations suggest that the responsible injection mechanism is mass-dependent and scatters the pitch angles. This leads us to favor a non-adiabatic mechanism proposed by (Delcourt, 2002).  相似文献   
179.
Israel  G.  Cabane  M.  Brun  J-F.  Niemann  H.  Way  S.  Riedler  W.  Steller  M.  Raulin  F.  Coscia  D. 《Space Science Reviews》2002,104(1-4):433-468
ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the calibration. Post probe descent simulation of flight results are planned, using the much representative GCMS and ACP spare models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
180.
We find the forms of the orbits in a self-consistent galactic model generated by a N-body simulation of the collapse of a protogalaxy. The model represents a stationary elliptical galaxy of type E5, which is approximately axisymmetric around its longest axis. The orbits are of three main types, box orbits (including box-like orbits), tube orbits and chaotic orbits. The box or box-like and tube orbits are represented by closed invariant curves on a Poincaré surface of section. The forms of the orbits and of the invariant curves can be explained by a third integral of motion I, that is given by the Giorgilli (1979) computer program. The nonresonant form of the third integral explains the box orbits, while a resonant form of this integral explains both the box orbits and the 1:1 tube orbits. The N-body model gives the distribution of velocities F, which is an exponential of the third integral.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号