全文获取类型
收费全文 | 3831篇 |
免费 | 3篇 |
国内免费 | 9篇 |
专业分类
航空 | 1713篇 |
航天技术 | 1420篇 |
综合类 | 10篇 |
航天 | 700篇 |
出版年
2021年 | 28篇 |
2018年 | 56篇 |
2017年 | 51篇 |
2016年 | 47篇 |
2014年 | 65篇 |
2013年 | 105篇 |
2012年 | 88篇 |
2011年 | 154篇 |
2010年 | 108篇 |
2009年 | 151篇 |
2008年 | 198篇 |
2007年 | 111篇 |
2006年 | 78篇 |
2005年 | 112篇 |
2004年 | 128篇 |
2003年 | 124篇 |
2002年 | 81篇 |
2001年 | 117篇 |
2000年 | 60篇 |
1999年 | 87篇 |
1998年 | 110篇 |
1997年 | 77篇 |
1996年 | 71篇 |
1995年 | 109篇 |
1994年 | 126篇 |
1993年 | 64篇 |
1992年 | 76篇 |
1991年 | 32篇 |
1990年 | 42篇 |
1989年 | 69篇 |
1988年 | 31篇 |
1987年 | 27篇 |
1986年 | 38篇 |
1985年 | 125篇 |
1984年 | 114篇 |
1983年 | 93篇 |
1982年 | 77篇 |
1981年 | 156篇 |
1980年 | 31篇 |
1979年 | 34篇 |
1978年 | 37篇 |
1977年 | 34篇 |
1976年 | 29篇 |
1975年 | 34篇 |
1974年 | 29篇 |
1973年 | 31篇 |
1972年 | 41篇 |
1971年 | 22篇 |
1970年 | 22篇 |
1969年 | 21篇 |
排序方式: 共有3843条查询结果,搜索用时 62 毫秒
91.
Kugusheva A. D. Kalegaev V. V. Vlasova N. A. Petrov K. A. Bazilevskaya G. A. Makhmutov V. S. 《Cosmic Research》2021,59(6):446-455
Cosmic Research - The results of an analysis of the space–time characteristics and dynamics of precipitations of magnetospheric electrons with energies in the range from 0.1 to 0.7 MeV are... 相似文献
92.
Following an enthusiastic start in 1985, ESA's life support technology development programme was re-assessed in the mid- to late-1990s to reflect the strong reduction in European manned space ambitions which occurred at that time. Further development was essentially restricted to activities that could constitute ISS upgrades or enhancements, or support ISS utilisation/operations, together with a single, limited, activity (MELISSA) aimed at bioregenerative life support, in the continuing hope that there might be "life after Station". The paper describes the current status of these activities and summarises the main priorities for future development that were identified at the April 1999 Workshop on Advanced Life Support. 相似文献
93.
Boston PJ Spilde MN Northup DE Melim LA Soroka DS Kleina LG Lavoie KH Hose LD Mallory LM Dahm CN Crossey LJ Schelble RT 《Astrobiology》2001,1(1):25-55
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms. 相似文献
94.
We propose using large Air Cerenkov telescopes (ACTs) to search for optical, pulsed signals from extraterrestrial intelligence. Such dishes collect tens of photons from a nanosecond-scale pulse of isotropic equivalent power of tens of solar luminosities at a distance of 100 pc. The field of view for giant ACTs can be on the order of 10 square degrees, and they will be able to monitor 10-100 stars simultaneously for nanosecond pulses of about 6th magnitude or brighter. Using the Earth's diameter as a baseline, orbital motion of the planet could be detected by timing the pulse arrivals. 相似文献
95.
96.
G. Tryggvason A. Esmaeeli A. Fernandez J. LuDepartment of Mechanical Engineering Worcester Polytechnic Institute InstituteRoad Worcester MA USA 《南京航空航天大学学报(英文版)》2001,18(Z1)
INTRODUCTIONMultiphase and multifluid flows are commonin many natural and technologically importantprocesses. Rain,spray combustion,spray paint-ing,and boiling heat transfer are just a few ex-amples.While it is the overall,integral charac-teristics of such flows that are of most interest,the global behavior is determined to a large de-gree by the evolution of the smallestscales in theflow.The combustion of sprays,for example,depends on the size and the number density ofthe drops.Generally… 相似文献
97.
98.
G. Reitz H. Bücker R. Beaujean W. Enge R. Facius W. Heinrich T. Ohrndorf E. Schopper 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(12):107-113
The experiment was flown in different locations inside BIORACK on the D1 mission. It contained different plastic detectors (cellulose nitrate, Lexan, and CR 39) and emulsions to measure the high LET components of the radiation environment. For low LET measurements thermoluminescence dosimeters (L iF) were used. The paper gives data about total dose, charge, energy, and LET spectra so far obtained. These data are compared with data of previous spaceflights. 相似文献
99.
H. Bücker R. Facius G. Horneck G. Reitz E. H. Graul H. Berger H. Hffken W. Rüther W. Heinrich R. Beaujean W. Enge 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(12):115-124
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22°C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept - eggs in monolayers were sandwiched between visual track detectors - and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples. 相似文献
100.
B. Nebeling K. Roessler G. Schmitz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(12):207-210
The redox properties of irradiated liquid and frozen H2O, NH3 and H2O/NH3 mixtures at 298 K and 77 K, resp., towards some simple organic molecules have been checked by injecting carrierfree 11C atoms and analyzing their chemical state by means of radiochromatography. The reactions and the stability of organic products versus radiation dose (in this study by MeV protons) depend on temperature, phase state, mobility of radicals, their concentration and reactivity. Especially dangerous are the reactive OH and O2H radicals which oxidize organic material to inorganic CO2. Highest stability has been found at low temperatures (solid state, reduced mobility of radicals) and for systems containing H-donors (H2O/NH3 mixtures), which reduce the concentration of oxidizing radicals. The fact that many bodies in space consist of H2O-ice with NH3 and CH4 additives at temperatures between 10 and 150 K is promising in view of the survival of organic matter under high doses of radiation. 相似文献