首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8960篇
  免费   14篇
  国内免费   28篇
航空   4078篇
航天技术   3141篇
综合类   25篇
航天   1758篇
  2021年   85篇
  2019年   54篇
  2018年   185篇
  2017年   123篇
  2016年   126篇
  2015年   60篇
  2014年   208篇
  2013年   274篇
  2012年   257篇
  2011年   392篇
  2010年   288篇
  2009年   395篇
  2008年   449篇
  2007年   274篇
  2006年   194篇
  2005年   251篇
  2004年   237篇
  2003年   279篇
  2002年   189篇
  2001年   290篇
  2000年   160篇
  1999年   212篇
  1998年   241篇
  1997年   159篇
  1996年   212篇
  1995年   258篇
  1994年   263篇
  1993年   156篇
  1992年   182篇
  1991年   73篇
  1990年   76篇
  1989年   185篇
  1988年   79篇
  1987年   75篇
  1986年   88篇
  1985年   243篇
  1984年   217篇
  1983年   172篇
  1982年   166篇
  1981年   294篇
  1980年   77篇
  1979年   66篇
  1978年   70篇
  1977年   63篇
  1976年   53篇
  1975年   73篇
  1974年   60篇
  1973年   57篇
  1972年   68篇
  1970年   54篇
排序方式: 共有9002条查询结果,搜索用时 343 毫秒
631.
As part of the Cluster Wave Experiment Consortium (WEC), the Wide-Band (WBD) Plasma Wave investigation is designed to provide high-resolution measurements of both electric and magnetic fields in selected frequency bands from 25 Hz to 577 kHz. Continuous waveforms are digitised and transmitted in either a 220 kbit s-1 real-time mode or a 73 kbit s-1 recorded mode. The real-time data are received directly by a NASA Deep-Space Network (DSN) receiving station, and the recorded data are stored in the spacecraft solid-state recorder for later playback. In both cases the waveforms are Fourier transformed on the ground to provide high-resolution frequency-time spectrograms. The WBD measurements complement those of the other WEC instruments and also provide a unique new capability for performing very-long-baseline interferometry (VLBI) measurements.  相似文献   
632.
Effects of polarization and resolution on SAR ATR   总被引:3,自引:0,他引:3  
Lincoln Laboratory is investigating the detection and classification of stationary ground targets using high resolution, fully polarimetric, synthetic aperture radar (SAR) imagery. A study is summarized in which data collected by the Lincoln Laboratory 33 GHz SAR were used to perform a comprehensive comparison of automatic target recognition (ATR) performance for several polarization/resolution combinations. The Lincoln Laboratory baseline ATR algorithm suite was used, and was optimized for each polarization/resolution case. Both the HH polarization alone and the optimal combination of HH, HV, and VV were evaluated; the resolutions evaluated were 1 ft/spl times/1 ft and 1 m/spl times/1 m. The data set used for this study contained approximately 74 km/sup 2/ of clutter (56 km/sup 2/ of mixed clutter plus 18 km/sup 2/ of highly cultural clutter) and 136 tactical target images (divided equally between tanks and howitzers).  相似文献   
633.
蒋洪德  J.G.Moore  J.Moore 《航空动力学报》1991,6(2):157-161,188-189
对于自由湍流引起的压力梯度为零的平板边界层转捩过程的数值模拟,本文提出了一个单方程湍流模型 (VL M模型),对湍流粘性系数和湍流长度尺度都进行了修正以正确引入低雷诺数效应。数值计算表明,该模型在自由来流湍流度为 0.03~8%的大范围内能正确模拟边界层转捩全过程,包括转捩区起点位置和转捩区长度、边界层内的平均及脉动参数分布等。本文还提出了上述转捩过程的时均化五阶段模型。   相似文献   
634.
The objective of the Nephelometer Experient aboard the Probe of the Galileo mission is to explore the vertical structure and microphysical properties of the clouds and hazes in the atmosphere of Jupiter along the descent trajectory of the Probe (nominally from 0.1 to > 10 bars). The measurements, to be obtained at least every kilometer of the Probe descent, will provide the bases for inferences of mean particle sizes, particle number densities (and hence, opacities, mass densities, and columnar mass loading) and, for non-highly absorbing particles, for distinguishing between solid and liquid particles. These quantities, especially the location of the cloud bases, together with other quantities derived from this and other experiments aboard the Probe, will not only yield strong evidence for the composition of the particles, but, using thermochemical models, for species abundances as well. The measurements in the upper troposphere will provide ground truth data for correlation with remote sensing instruments aboard the Galileo Orbiter vehicle. The instrument is carefully designed and calibrated to measure the light scattering properties of the particulate clouds and hazes at scattering angles of 5.8°, 16°, 40°, 70°, and 178°. The measurement sensitivity and accuracy is such that useful estimates of mean particle radii in the range from about 0.2 to 20 can be inferred. The instrument will detect the presence of typical cloud particles with radii of about 1.0 , or larger, at concentrations of less than 1 cm3.Deceased.  相似文献   
635.
The Energetic Particles Investigation (EPI) instrument operates during the pre-entry phase of the Galileo Probe. The major science objective is to study the energetic particle population in the innermost regions of the Jovian magnetosphere — within 4 radii of the cloud tops — and into the upper atmosphere. To achieve these objectives the EPI instrument will make omnidirectional measurements of four different particle species — electrons, protons, alpha-particles, and heavy ions (Z > 2). Intensity profiles with a spatial resolution of about 0.02 Jupiter radii will be recorded. Three different energy range channels are allocated to both electrons and protons to provide a rough estimate of the spectral index of the energy spectra. In addition to the omnidirectional measurements, sectored data will be obtained for certain energy range electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted, circular silicon surfacebarrier detectors surrounded by a cylindrical tungsten shielding with a wall thickness of 4.86 g cm-2. The telescope axis is oriented normal to the spherical surface of the Probe's rear heat shield which is needed for heat protection of the scientific payload during the Probe's entry into the Jovian atmosphere. The material thickness of the heat shield determines the lower energy threshold of the particle species investigated during the Probe's pre-entry phase. The EPI instrument is combined with the Lightning and Radio Emission Detector (LRD) such that the EPI sensor is connected to the LRD/EPI electronic box. In this way, both instruments together only have one interface of the Probe's power, command, and data unit.  相似文献   
636.
CFAR data fusion center with inhomogeneous receivers   总被引:1,自引:0,他引:1  
Detection systems with distributed sensors and data fusion are increasingly used by surveillance systems. A system formed by N inhomogeneous constant false alarm rate (CFAR) detectors (cell-averaging (CA) and ordered statistic (OS) CFAR detectors) is studied. A recursive formulation of an algorithm that permits a fixed level of false alarms in the data fusion center is presented, to set the optimum individual threshold levels in the CFAR receivers and the optimum `K out of N' decision rule in order to maximize the total probability of detection. The algorithm also considers receivers of different quality or with different communication channel qualities connecting them with the fusion center. This procedure has been applied to several hypothetical networks with distributed CA-CFAR and OS-CFAR receivers and for Rayleigh targets and interference, and it was seen that in general the fusion decision OR rule is not always the best  相似文献   
637.
When the basic step transform algorithm is used to compress synthetic-aperture radar (SAR) signals in azimuth, the linear FM rate and sampling rate must satisfy certain tight constraints. In practice, these constraints cannot be satisfied and errors are introduced into the compressed SAR image. A modification is described of the basic step transform which incorporates interpolation and resampling into the algorithm. These changes allow the removal of the constraints and make the step transform more useful for the compression of real data. An autofocusing capability is also included, without introducing much additional complexity  相似文献   
638.
639.
The Magnetic Field of Mercury   总被引:1,自引:0,他引:1  
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.  相似文献   
640.
采用大涡模拟LES方法计算了火箭发动机超声速过膨胀射流形态及近场声压分布,研究了入口温度与环境温度的比值(温度比)对声场的影响;将声源分解,基于Ffowcs Williams-Hawkings (FW-H)方程获取了不同位置噪声源的远场噪声,并根据声压级频谱和湍流形态分析了超声速射流噪声的产生机理。研究表明,超声速过膨胀射流气动噪声由湍流混合噪声和宽频激波噪声组成,近场噪声源以马赫波形式向大方位角辐射中高频噪声,下游大尺度湍流向低方位角范围辐射低频噪声,声压级峰值频率随观测角度增大而升高;随温度比升高,马赫波辐射角度增大,噪声指向性发生改变。该研究可为运载火箭发动机地面试车或火箭发射段声学环境设计提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号