首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   6篇
  国内免费   3篇
航空   199篇
航天技术   63篇
综合类   8篇
航天   55篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   12篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   12篇
  2012年   8篇
  2011年   12篇
  2010年   11篇
  2009年   16篇
  2008年   9篇
  2007年   16篇
  2006年   13篇
  2005年   16篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   12篇
  2000年   16篇
  1999年   11篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   8篇
  1994年   4篇
  1992年   8篇
  1991年   2篇
  1989年   3篇
  1987年   2篇
  1985年   15篇
  1984年   9篇
  1983年   2篇
  1982年   7篇
  1981年   17篇
  1980年   4篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有325条查询结果,搜索用时 671 毫秒
151.
The state of knowledge about the structure and composition of icy satellite interiors has been significantly extended by combining direct measurements from spacecraft, laboratory experiments, and theoretical modeling. The existence of potentially habitable liquid water reservoirs on icy satellites is dependent on the radiogenic heating of the rock component, additional contributions such as the dissipation of tidal energy, the efficiency of heat transfer to the surface, and the presence of substances that deplete the freezing point of liquid water. This review summarizes the chemical evolution of subsurface liquid water oceans, taking into account a number of chemical processes occuring in aqueous environments and partly related to material exchange with the deep interior. Of interest are processes occuring at the transitions from the liquid water layer to the ice layers above and below, involving the possible formation of clathrate hydrates and high-pressure ices on large icy satellites. In contrast, water-rock exchange is important for the chemical evolution of the liquid water layer if the latter is in contact with ocean floor rock on small satellites. The composition of oceanic floor deposits depends on ambient physical conditions and ocean chemistry, and their evolutions through time. In turn, physical properties of the ocean floor affect the circulation of oceanic water and related thermal effects due to tidally-induced porous flow and aqueous alteration of ocean floor rock.  相似文献   
152.
Over the last years, Carbon Nanotubes (CNT) drew interdisciplinary attention. Regarding space technologies a variety of potential applications were proposed and investigated. However, no complex data on the behaviour and degradation process of carbon nanotubes under space environment exist. Therefore, it is necessary to investigate the performance of these new materials in space environment and to revaluate the application potential of CNTs in space technologies.Hence, CiREX (Carbon Nanotubes – Resistance Experiment) was developed as a part of a student project. It is a small and compact experiment, which is designed for CubeSat class space satellites. These are a class of nanosatellites with a standardized size and shape. The CiREX design, electrical measurements and the satellites interfaces will be discussed in detail. CiREX is the first in-situ space material experiment for CNTs.To evaluate the data obtained from CiREX, ground validation tests are mandatory. As part of an extensive test series the behaviour of CNTs under solar ultra violet light (UV) and vacuum ultraviolet light (VUV) was examined. Single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT) and MWNT/resin composite (ME) were exposed to different light sources. After the exposure, the defect density was investigated with Raman spectroscopy. There is a clear indication that UV and VUV light can increase the defect density of untreated CNTs and influence the electrical behaviour.  相似文献   
153.
Effects of ice accretions on aircraft aerodynamics   总被引:13,自引:0,他引:13  
This article is a systematic and comprehensive review, correlation, and assessment of test results available in the public domain which address the aerodynamic performance and control degradations caused by various types of ice accretions on the lifting surfaces of fixed wing aircraft. To help put the various test results in perspective, overviews are provided first of the important factors and limitations involved in computational and experimental icing simulation techniques, as well as key aerodynamic testing simulation variables and governing flow physics issues. Following these are the actual reviews, assessments, and correlations of a large number of experimental measurements of various forms of mostly simulated in-flight and ground ice accretions, augmented where appropriate by similar measurements for other analogous forms of surface contamination and/or disruptions. In-flight icing categories reviewed include the initial and inter-cycle ice accretions inherent in the use of de-icing systems which are of particular concern because of widespread misconceptions about the thickness of such accretions which can be allowed before any serious consequences occur, and the runback/ridge ice accretions typically associated with larger-than-normal water droplet encounters which are of major concern because of the possible potential for catastrophic reductions in aerodynamic effectiveness. The other in-flight ice accretion category considered includes the more familiar large rime and glaze ice accretions, including ice shapes with rather grotesque features, where the concern is that, in spite of all the research conducted to date, the upper limit of penalties possible has probably not been defined. Lastly, the effects of various possible ground frost/ice accretions are considered. The concern with some of these is that for some types of configurations, all of the normally available operating margins to stall at takeoff may be erased if these accretions are not adequately removed prior to takeoff. Throughout this review, important voids in the available database are highlighted, as are instances where previous lessons learned have tended to be overlooked.  相似文献   
154.
Uncertainty on carbon fluxes is determined by the uncertainties of ecosystem model structure, data and model parameter uncertainties and the temporal and spatial inaccuracy of the input data retrieval. The objective of this paper is to understand the error propagation and uncertainty of evaporative fraction (EF), soil moisture content (SMC) and water limited net ecosystem productivity (NEP). In this respect, C-Fix and spaceborne remote sensing are used for the ‘Brasschaat’ pixel. A simple model based on error theory and a Monte-Carlo approach are used. Different error scenarios are implemented to assess input uncertainty on EF, SMC and NEP as estimated with C-Fix.  相似文献   
155.
We discuss the interaction between the magnetosphere of a young star and its surrounding accretion disk. We consider how an X-wind can be driven magnetocentrifugally from the inner edge of the disk where accreting gas is diverted onto stellar field lines either to flow onto the Sun or to be flung outwards with the wind. The X-wind satisfies many observational tests concerning optical jets, Herbig-Haro objects, and molecular outflows. Connections may exist between primitive solar system materials and X-winds. Chondrules and calcium-aluminum-rich inclusions (CAIs) experienced short melting events uncharacteristic of the asteroid belt where meteorites originate. The inner edge of the solar nebula has the shortest orbital timescale available to the system, a few days. Protosolar flares introduce another timescale, tens of minutes to hours. CAIs may form when solids are lifted from shaded portions of the disk close to the Sun and are exposed to its intense light for a day or so before they are flung by the X-wind to much larger distances. Chondrules were melted, perhaps many times, by flares at larger distances from the Sun before being launched and annealed, but not remelted, in the X-wind. Aerodynamic sorting explains the narrow range of sizes with which CAIs and chondrules are found in chondritic meteorites. Flare-generated cosmic-rays may induce spallation reactions that produce some of the short-lived radioactivities associated with primitive solar system rocks. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
156.
Verbunt  Frank 《Space Science Reviews》2000,92(3-4):614-614
Space Science Reviews -  相似文献   
157.
Beginning in the early 1950s, data from neutron monitors placed the taxonomy of cosmic ray temporal variations on a firm footing, extended the observations of the Sun as a transient source of high energy particles and laid the foundation of our early concepts of a heliosphere. The first major impact of the arrival of the Space Age in 1957 on our understanding of cosmic rays came from spacecraft operating beyond the confines of our magnetosphere. These new observations showed that Forbush decreases were caused by interplanetary disturbances and not by changes in the geomagnetic field; the existence of both the predicted solar wind and interplanetary magnetic field was confirmed; the Sun was revealed as a frequent source of energetic ions and electrons in the 10–100 MeV range; and a number of new, low-energy particle populations was discovered. Neutron monitor data were of great value in interpreting many of these new results. With the launch of IMP 6 in 1971, followed by a number of other spacecraft, long-term monitoring of low and medium energy galactic and anomalous cosmic rays and solar and interplanetary energetic particles, and the interplanetary medium were available on a continuous basis. Many synoptic studies have been carried out using both neutron monitor and space observations. The data from the Pioneer 10/11 and Voyagers 1/2 deep space missions and the journey of Ulysses over the region of the solar poles have significantly extended our knowledge of the heliosphere and have provided enhanced understanding of many effects that were first identified in the neutron monitor data. Solar observations are a special area of space studies that has had great impact on interpreting results from neutron monitors, in particular the identification of coronal holes as the source of high-speed solar wind streams and the recognition of the importance of coronal mass ejections in producing interplanetary disturbances and accelerating solar energetic particles. In the future, with the new emphasis on carefully intercalibrated networks of neutron monitors and the improved instrumentation for space studies, these symbionic relations should prove to be even more productive in extending our understanding of the acceleration and transport of energetic particles in our heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
158.
A short history of the European Transonic Wind Tunnel ETW   总被引:10,自引:0,他引:10  
This paper is written as a contribution to the celebration of 50 years of Progress in Aerospace Sciences and of the centenary of the birth of its founder, Dietrich Küchemann. It reviews the evolution of the European Transonic Wind Tunnel, ETW, from early conceptual studies to its entry into service and its current capabilities and achievements. It traces the development, from the earliest days, of experimental aerodynamics and of the basic aerodynamic understanding that gave rise to the main periods of wind tunnel building before and after World War II. By about 1960, this activity appeared to have come to a natural halt. The paper gives an account of the role of Küchemann in arguing the need in 1968 for a further step in wind tunnel capability, to provide transonic testing at high Reynolds numbers. It describes his leading role in gaining acceptance of the concept, formulating the specification and promoting studies of alternative, radical design options for the co-operative European project that became ETW. The progress of ETW through design, construction, commissioning and into full operation is recorded. The paper discusses the many technical innovations that have been introduced in order to meet customer requirements in the challenging field of aerodynamic testing in a cryogenic environment and, finally, looks to the future and the further technical challenges that it holds.  相似文献   
159.
Space observations in several near-Earth environments have revealed the presence of positive-potential, large-amplitude electrostatic structures, associated with high-frequency disturbances, and indicative of electron dynamics. Earlier models proposed in terms of electron-acoustic solitary waves in a two-electron-temperature plasma were inadequate, because only negative potential structures could thus be obtained, whereas the observations point to positive potential structures. In this paper, it is shown that the theoretical restriction to negative potential solitons is due to the neglect of the inertia of the hot electrons, implicitly or explicitly assumed in previous papers. If hot electron inertia is retained, however, there exists a parameter range where positive potential solitary waves are formed, which can have important consequences for the re-interpretation of several astrophysical phenomena involving two-electron-temperature plasmas. PACS: 52.35.Mw, 52.35.Sb, 96.50.Ry  相似文献   
160.
Beer  Jürg 《Space Science Reviews》2000,93(1-2):107-119
Man-made neutron monitors have provided a continuous detailed record of the cosmic-ray flux over only about the last 5 decades. Fortunately, nature operates its own detectors and offers the opportunity to extend the cosmic-ray records over much longer time scales. Two different types of `natural detectors' can be distinguished. The first is based on long lived radionuclides that are produced by cosmic-ray interactions in the atmosphere and subsequently become stored in archives such as ice sheets or tree rings. The second type are rocks that are exposed to cosmic-rays at a certain time and from then on integrate the production of cosmogenic nuclides over the whole exposure time. The analysis of 10Be in polar ice cores and 14C in tree rings clearly reveals solar and geomagnetic modulation of the cosmic-ray flux on different time scales ranging from decades (11-year Schwabe cycle) to millennia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号