首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
  国内免费   1篇
航空   59篇
航天技术   17篇
综合类   1篇
航天   23篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
91.
Several results from analyses of auroral and geocoronal images from the Dynamics Explorer Mission are summarized. (1) The motion of the transpolar arc of a theta aurora is found to be correlated with the y-component of the interplanetary magnetic field. The arc motion is in the general direction of the y-component. (2) A sequence of global images of a small auroral substorm shows the initial development of intense luminosities in a relatively small spatial region, or ‘bright spot’, in the pre-midnight sector of the auroral oval and a subsequent appearance of an expanding area of lesser intensities at lower latitudes and contiguous to the midnight boundary of the bright spot. This evolution of auroral luminosities is interpreted in terms of acceleration of electrons in the boundary layer of the magnetotail plasma sheet to produce the bright spot and subsequent injection into, and eastward drift within, the plasma sheet to form the diffuse area of lesser intensities. (3) A series of images of the Earth's geocorona in scattered solar Ly α emissions is used to obtain a best-fit spherical model of atomic hydrogen densities in the Earth's exosphere. A Chamberlain model provides an adequate fit to radial distances of 4.5 RE, beyond which an exponential fit is used. The geocoronal tail is detected as an asymmetric increase in scattered Ly α intensities in the anti-solar direction.  相似文献   
92.
93.
94.
First magnetospheric measurements of the three-dimensional velocity distributions for positive ions and electrons within the energy range 1 eV E/Q 45keV are reported. These velocity distributions are gained with quadrispherical Lepedeas on board the spacecraft ISEE-1 and -2. Three-dimensional bulk flows of protons in the vicinity of the magnetopause and within the dayside magnetosphere and dawn sector of the magnetotail are presented. Proton drift velocities within the magnetosphere and magnetotail can be directly determined and employed to calculate the corresponding quasi-static perpendicular electric fields and to provide quantitative analyses of kinematical models for plasma motions. Nonmonotonic features in the electron velocity distributions are found simultaneously with the presence of electron cyclotron harmonic electrostatic waves in the dayside magnetosphere. The relationship of the observed electron velocity distributions to expectations for resonant pitch-angle and energy diffusion is discussed, as well as the possibility of the existence of proton cyclotron harmonic instabilities. Examples of the signature of field-aligned acceleration of protons into the magnetosphere and the presence of low-energy ionospheric ions in the near-earth magnetotail are also presented. Perpendicular electrostatic fields can be calculated from the observed three-dimensional velocity distributions and are found to have typical magnitudes of 1 mV m-1.  相似文献   
95.
Using the imaging instrumentation aboard the Dynamics Explorer spacecraft (DE-I), total column ozone densities are obtained in the sunlit hemisphere by measuring the intensities of backscattered solar ultraviolet radiation with multiple filters and multiple photometers. The high apogee altitude (23,000 km) of the eccentric polar orbit allows high resolution global-scale images of the terrestrial ozone field to be obtained within 12 minutes. Previous ozone-monitoring spacecraft have required much longer time periods for comparable spatial coverage because of their lower altitudes (<1200 km). The much higher altitude of DE-I also provides hours of continuous imaging of features compared to minutes or seconds with previous spacecraft. Near perigee, high resolution images can be gained with pixel size as small as 3 km to view mesoscale atmospheric variations. Utilizing these data, the effects of planetary-scale, synoptic-scale, and mesoscale dynamical processes, which control the distribution of ozone near the tropopause, can be studied. Preliminary results show short-term (less than one day) variations in the synoptic ozone field and these variations appear to be in accord with meteorological data. Spatial variations in the ozone field are found to be highly negatively correlated with tropopause altitude.  相似文献   
96.
NASA's COST LESS Team is pursuing strategies to reduce the cost and complexity of planning and executing space missions. The team's technical goal is to reverse the trend of constructing unique solutions for similar problems. To this end, the team is exploring ways to represent mission functionality in terms of building blocks and is discovering approaches that could accommodate the same building blocks for seemingly disparate activities, such as organizing processed telemetry data, controlling onboard experiments, searching science archives, reducing and presenting information to science users, and supporting educational outreach. Reusable object technology (UOT), a research undertaking by the authors, is showing promise in recognizing similarities in functions which were previously viewed as unique because they appeared in different programs or mission phases. Since UOT is aimed at being implementation independent (i.e. the function performed could be accomplished manually, by an automated process, by a specialized instrument, etc.), no premature judgment for automation or autonomy need be made. In this paper, the authors attempt to strike a balance between theory and reality as they describe UOT, including its beginnings, its underpinning, its utility, and its potential for achieving substantive reductions in cost and complexity for the Agency's space programs. The authors discuss their collaboration with the Center for EUV Astrophysics, University of California, Berkeley to reduce the cost and complexity of science investigations. Their multi-disciplinary plan incorporates both UOT and a complementary technology introduced in this paper, called interactive archives.  相似文献   
97.
A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.  相似文献   
98.
The technology of gallium arsenide field-effect transistors has advanced to the point where these devices can serve to replace traveling wave tubes in spaceborne communication transponders.This paper describes interim results of a C-band FET amplifier which is currently being developed by RCA for INTELSAT. The FETA is designed to provide a 6-W output with an efficiency greater than 25%, and a backed-off 1.5-W output level with low distortion and efficiency of 13%.The third order intermodulation (CI) of a FETA at saturation is typically 15 dB as compared to 10 dB for a TWTA. At 10 dB input power back-off the CI improves to 24 dB while that of a TWTA is only 16 dB.We fabricated a breadboard 5-W FETA which demonstrates that a linear operation can be achieved at an output level of 1.5 W with 10% efficiency. By contrast the efficiency of a typical 5 W TWTA in the same linear region is no greater than 3–5%.  相似文献   
99.
The least-angle strategy is a common wayfinding method that can be applied in unknown environments if the target direction is known. The strategy is based on the navigator's heuristic to select the street segment at an intersection which is most in line with the target direction. To use this strategy, the navigator needs to know the angles between the target direction and the street segments leading out from the intersection. If the direct view to the target is blocked and the target vector cannot be perceived, the target direction that is needed for the decision process is based on the agent's believed position and orientation (estimated through path integration). The agent's believed position and target direction are distorted by human errors in estimation of distances and directions, mainly affecting the path integration process. In this paper we examine how human estimation errors of distance and rotation influence the decision behavior in the wayfinding process in an unknown street environment. To demonstrate the geometrical consequences for a specific test case, we use a simulated software agent which navigates in a simulated street environment.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号