首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
  国内免费   1篇
航空   59篇
航天技术   17篇
综合类   1篇
航天   23篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有100条查询结果,搜索用时 0 毫秒
61.
Long-term sensitivity of human cells to reduced gravity has been supposed since the first Apollo missions and was demonstrated during several space missions in the past. However, little information is available on primary and rapid gravi-responsive elements in mammalian cells. In search of rapid-responsive molecular alterations in mammalian cells, short-term microgravity provided by parabolic flight maneuvers is an ideal way to elucidate such initial and primary effects. Modern biomedical research at the cellular and molecular level requires frequent repetition of experiments that are usually performed in sequences of experiments and analyses. Therefore, a research platform on Earth providing frequent, easy and repeated access to real microgravity for cell culture experiments is strongly desired. For this reason, we developed a research platform onboard the military fighter jet aircraft Northrop F-5E “Tiger II”. The experimental system consists of a programmable and automatically operated system composed of six individual experiment modules, placed in the front compartment, which work completely independent of the aircraft systems. Signal transduction pathways in cultured human cells can be investigated after the addition of an activator solution at the onset of microgravity and a fixative or lysis buffer after termination of microgravity. Before the beginning of a regular military training flight, a parabolic maneuver was executed. After a 1 g control phase, the parabolic maneuver starts at 13,000 ft and at Mach 0.99 airspeed, where a 22 s climb with an acceleration of 2.5g is initiated, following a free-fall ballistic Keplerian trajectory lasting 45 s with an apogee of 27,000 ft at Mach 0.4 airspeed. Temperature, pressure and acceleration are monitored constantly during the entire flight. Cells and activator solutions are kept at 37 °C during the entire experiment until the fixative has been added. The parabolic flight profile provides up to 45 s of microgravity at a quality of 0.05g in all axes. Access time is 30 min before take-off; retrieval time is 30 min after landing. We conclude that using military fighter jets for microgravity research is a valuable tool for frequent and repeated cell culture experiments and therefore for state-of-the art method of biomedical research.  相似文献   
62.
This paper considers a spinning rigid body and a particle with internal motion under axial thrust. This model is helpful for gaining insights into the nutation anomalies that occurred near the end of orbit injections performed by STAR-48 rocket motors. The stability of this system is investigated by means of linearized equations about a uniform spin reference state. In this model, a double root does not necessarily imply instability. The resulting stability condition defines a manifold in the parameter space. A detailed study of this manifold and the parameter space shows that the envelope of the constant solutions is in fact the stability boundary. Only part of the manifold defines a physical system and the range of frequency values that make the system unstable is restricted. Also it turns out that an increase of the spring stiffness, which restrains the internal motion, does not necessarily increase the stability margin. The application of the model is demonstrated using the orbit injection data of ESA's Ulysses satellite in 1990.  相似文献   
63.
The CEPPAD Imaging Proton Spectrometer on the POLAR spacecraft has proven to perform very well as an Energetic Neutral (ENA) atom imager, despite the fact that it was designed primarily for measuring energetic ions in-situ. ENAs emitted from the ring current can be detected during storm- as well as quiet-time conditions and can be monitored continuously for many hours at a time when Polar is situated in the polar cap. In addition, we are able to routinely detect ‘bursts’ of ENA emissions in response to substorm-associated ion injections. In this paper, we present ENA images of a single such event together with global auroral imager data from the POLAR VIS instrument. LANL geosynchronous energetic particle data, and ground magnetic Pi2 data in order to establish that such bursts are indeed caused by substorm injections.  相似文献   
64.
大约4年前,加拿大航空技术公司(ACTS)与铬合金公司结为战略合作伙伴,在CF34发动机的维修中采用由铬合金公司生产的PMA件,以减少大修成本.  相似文献   
65.
据美国航空周刊MRO Prospector提供的数据,2008年中东地区航空维修市场总支出约为22.1亿美元,其中与宽体飞机相关的维修支出约占总数的68.2%.随着中东地区航空公司机队规模的不断壮大,到2018年该地区的民用航空维修支出将增长56%,达到34.4亿美元.而且宽体飞机将会由2008年的400架增至2018年的668架,增幅达67%,维修支出的比例也将升高为68.5%.  相似文献   
66.
67.
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) is a tracking technique based on a one-way ground to space Doppler link. For Low Earth Orbit (LEO) satellites, DORIS shows a robust capability in terms of data coverage and availability, due to a wide and well-distributed ground network, where data are made available by the International Doris Service (IDS). However, systematic errors remain in the DORIS data, such as instabilities of the on-board clock due to radiation encountered in space, which limit the accurate determination of station positions.The DORIS on-board clock frequency stability is degraded by the increased radiation found in the region of the South Atlantic Anomaly (SAA) and has been shown to degrade station position estimation. This paper introduces a new model correction to the DORIS data for the frequency of the Jason-2 Ultra Stable Oscillator (USO), derived from the Time Transfer by Laser Link (T2L2) experiment (Belli and Exertier, 2018). We show that a multi-satellite DORIS solution including this T2L2-corrected data applied to the frequency modelling for The DORIS data, improves the estimation of station coordinates. We show the tie residuals with respect to collocated GPS stations are improved by several millimeters. We also demonstrate that the 117-day (Jason-2) draconitic signal in the geophysical parameters is reduced, implying that the origin of this signal is not just solar radiation pressure mis-modeling, but also radiation-induced clock perturbations on the Jason-2 DORIS Ultra-Stable-Oscillator (USO). Finally we demonstrate through comparisons with the International Earth Rotations and Reference Systems Service (IERS) C04 series for Earth Orientation Parameters (EOP), that the estimation of EOP is improved in both a Jason-2 DORIS-only and a multi-satellite DORIS solution for EOP.  相似文献   
68.
Culbertson F 《Acta Astronautica》2004,54(11-12):793-797
The Commander of the International Space Station Expedition Three describes what the space station looks like. The tour includes the American communications link, the Express rack for science experiments, the Node with its collapsible water containers, the Airlock, the FGB, and living space in the Service Module.  相似文献   
69.
Hypotheses of global wildfires following the Cretaceous-Tertiary (KT) boundary impact are supported by high concentrations of elemental carbon (3.6 mg cm(-2)) and soot (1.8 mg cm(-2)) in DSDP Site 465, which was located several thousand kilometers from potential continental sources at 65 Ma. Soot is not preserved at four other central Pacific KT localities, but this is attributed to loss during oxic diagenesis. We find no evidence for wildfires related to major impacts in the late Eocene or to Ir anomalies and extinctions in the late Cenomanian.  相似文献   
70.
Bluem V  Paris F 《Acta Astronautica》2002,50(12):775-785
The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号