首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2255篇
  免费   10篇
  国内免费   10篇
航空   1090篇
航天技术   817篇
综合类   10篇
航天   358篇
  2021年   22篇
  2018年   38篇
  2017年   21篇
  2016年   26篇
  2014年   48篇
  2013年   57篇
  2012年   49篇
  2011年   91篇
  2010年   64篇
  2009年   90篇
  2008年   97篇
  2007年   52篇
  2006年   43篇
  2005年   57篇
  2004年   70篇
  2003年   72篇
  2002年   37篇
  2001年   57篇
  2000年   39篇
  1999年   47篇
  1998年   67篇
  1997年   42篇
  1996年   67篇
  1995年   79篇
  1994年   55篇
  1993年   49篇
  1992年   64篇
  1991年   30篇
  1990年   19篇
  1989年   49篇
  1988年   23篇
  1987年   20篇
  1986年   21篇
  1985年   85篇
  1984年   53篇
  1983年   53篇
  1982年   60篇
  1981年   72篇
  1980年   21篇
  1979年   26篇
  1978年   26篇
  1977年   26篇
  1976年   20篇
  1975年   20篇
  1974年   20篇
  1973年   11篇
  1972年   14篇
  1970年   18篇
  1969年   19篇
  1967年   10篇
排序方式: 共有2275条查询结果,搜索用时 15 毫秒
911.
Organic chemistry on Titan and prebiotic chemistry on Earth involve the same N-containing organics: nitriles and their oligomers. Couplings of their chemistry in the three parts of Titan's geofluid (atmosphere, aerosols and surface) seem to play a key role in the organic chemical evolution of the planet. If liquid water was present on Titan, then a prebiotic chemistry, involving eutectics, similar to that of the early Earth, may have occurred. However, liquid water is currently absent and a prebiotic chemistry based only on N-organics may be evolving now on Titan. The other consequence of the low temperatures of Titan is the possible formation of organics unstable at room temperature and very reactive. So far, these compounds have not been systematically searched for in experimental studies of Titan's organic chemistry. C4N2 has already been detected on Titan. Powerful reactants in organic chemistry, CH2N2, and CH3N3, may be also present. They exhibit spectral signatures in the mid-IR strong enough to allow their detection at the 10-100 ppb level. They may be detectable on future IR spectra (ISO and Cassini) of Titan.  相似文献   
912.
The Sondrestrom radar facility, funded by the NSF Upper Atmospheric Facilities Program, is operated and managed by SRI International. The facility is located on the west coast of Greenland, just north of the Arctic Circle, near 75 deg invariant magnetic latitude. The principal instrument at the facility is the incoherent scatter radar. The incoherent scatter technique allows the direct measurement of ionospheric electron number density, ion velocity, and electron and ion temperature along the radar beam. Because the radar antenna is fully steerable these parameters can be determined as functions of horizontal distance and altitude. Additional ionospheric quantities can be derived using these measured parameters. As part of the ISTP mission, the radar will measure the spatial (horizontal and altitudinal) and temporal variations of ionospheric parameters including electron density, large scale electric field. conductivity, currents, and energy input. Repetitive measurements define variations of parameters with local time, as well.  相似文献   
913.
A new advanced type of high ambient viewing AC electroluminescent display has been developed incorporating a combination of high contrast and high brightness techniques. The improvement in the contrast is achieved by a black absorption layer within the thin film structure. Improvement in the brightness is attributed to increasing the refresh rate by an order of magnitude. This can only be accomplished by an order of magnitude decrease in front electrode impedance with the use of a new metalized structure to reinforce the ITO electrodes and lower their resistance  相似文献   
914.
The analysis of carbonaceous matter in p/Halley's dust and coma via mass spectrometry of positive ions is reviewed. Dust impact generated ions were analyzed by the PUMA instrument aboard VEGA I, and coma plasma ions by the PICCA instrument aboard GIOTTO. For the organic molecules results an overall C:H:O:N ratio of 1.:1.4:0.6:0.1. Most of this polymer material can formally be understood as an aggregation of monomers C2H2, CH2O, and HCN. Special emphasis is given to possible aromatic, especially heterocyclic, and other unsaturated ions, and their importance for abiotic chemical and prebiotic evolution. Aspects of the potential heterogeneous catalysis in liquid water at the inorganic grain backbone structure found by this analysis, too, are also treated.  相似文献   
915.
We present a comparison between the IR spectrum of the galactic center source IRS 7 and the spectrum of a carbonaceous polymer from the Orgueil meteorite. We have obtained an almost perfect match between the two spectra in the region between 3020-2790 cm-1, which suggests that the chemical composition of the interstellar organic matter and that of the meteorite polymer are similar or that the meteoritic polymer could be a well preserved interstellar organic molecule. Assuming that the meteoritic polymer has the same C/H ratio as these interstellar molecules, we find that 45 % of the total abundance of carbon in the line of sight toward IRS 7 is trapped in such an interstellar organic grain material.  相似文献   
916.
Adaptive arrays utilizing an internally generated reference signal to drive least mean square (LMS) weight determining loops have experienced difficulty arising from phase shifts induced by the reference generating circuits. The phenomenon observed is that the expected value of the weights oscillate in the steady state modulating the incoming signal. A scheme is reported which avoids this problem. It differs from earlier methods in that the reference generator has no infinite limiter so that the amplitude of the reference is not constant and in that one element is left unweighted. Alternative schemes were considered wherein the reference signal is drawn from all the array elements or from the weighted elements only. Only the latter is fully reported here, and is found superior. It is shown that in the presence of a desired signal and independent element noise, the processing scheme proposed produces weights whose expected values converge to a constant nonoscillatory state provided certain mild constraints are satisfied. In particular, if a cos ? ? 1, a being the gain and ? the phase shift of the filter in the reference generator, the weights converge. In addition, the steady state signal-to-noise power ratio (SNR) is determined. It is found that with a cos ? close to unity the SNR is that of an (N-1) element array coherently combined, where N is the number of elements. The SNR falls off with departures of a and ? from 1 and 0, respectively, but not drastically.  相似文献   
917.
The German Infrared Laboratory GIRL is a liquid helium-cooled telescope with four focal plane instruments dedicated to astronomical and aeronomical observations.Hardware tests were performed with a thermal model of the cryostat and other components as active phase separator, optical switches, main mirror, baffle etc.In the test phase the thermal behavior of the system was checked out in a step by step procedure. The timeline of the individual experiments and of two representative orbits were simulated by electrical heaters. Temperatures and helium flow rates for the different operation modes were measured.An outlook shows that the project phase in 1982 is dedicated to further development and tests of hardware and complete definition and specification of all GIRL systems.  相似文献   
918.
Signals of VLF transmitters of the Omega navigation system located in the auroral zone (66.4°N, 13.2°E, L= 5) were recorded by the VLF receiving equipment of the Interkosmos 19 satellite. Signals at frequencies between 10.2 and 13.6 kHz were received in a region above the transmitters, frequently with whistler-type echoes. An analysis of these echoes has shown their predominating occurrence in periods of low geomagnetic activity (Kp<2+). The occurrence region of these phenomena in the outer ionosphere has the dimension of about 1000 km and its position is betweenL= 2.5 and L= 4.4. The delay of echo-signals is practically the same during one satellite pass but its values for different satellite revolutions lie between 2.5 and 3.5 s. The frequency spectrum of these signals can be broadened up to 100 Hz. On the basis of calculations made, it can be shown that the experimental results are generally in accordance with the hypothesis of nonlinear ducting of VLF waves in the magnetosphere.  相似文献   
919.
920.
Blanc  M.  Bolton  S.  Bradley  J.  Burton  M.  Cravens  T.E.  Dandouras  I.  Dougherty  M.K.  Festou  M.C.  Feynman  J.  Johnson  R.E.  Gombosi  T.G.  Kurth  W.S.  Liewer  P.C.  Mauk  B.H.  Maurice  S.  Mitchell  D.  Neubauer  F.M.  Richardson  J.D.  Shemansky  D.E.  Sittler  E.C.  Tsurutani  B.T.  Zarka  Ph.  Esposito  L.W.  Grün  E.  Gurnett  D.A.  Kliore  A.J.  Krimigis  S.M.  Southwood  D.  Waite  J.H.  Young  D.T. 《Space Science Reviews》2002,104(1-4):253-346
Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment. The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan. Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling between dust, neutral gas and plasma populations. Beyond about twelve Saturn radii is the outer magnetosphere, where the dynamics is dominated by its coupling with the solar wind and a large hydrogen torus. It is a region of intense coupling between the magnetosphere and Saturn's upper atmosphere, and the source of Saturn's auroral emissions, including the kilometric radiation. For each of these regions we identify the key scientific questions and propose an investigation strategy to address them. Finally, we show how the unique characteristics of the CASSINI spacecraft, instruments and mission profile make it possible to address, and hopefully solve, many of these questions. While the CASSINI orbital tour gives access to most, if not all, of the regions that need to be explored, the unique capabilities of the MAPS instrument suite make it possible to define an efficient strategy in which in situ measurements and remote sensing observations complement each other. Saturn's magnetosphere will be extensively studied from the microphysical to the global scale over the four years of the mission. All phases present in this unique environment — extended solid surfaces, dust and gas clouds, plasma and energetic particles — are coupled in an intricate way, very much as they are in planetary formation environments. This is one of the most interesting aspects of Magnetospheric and Plasma Science studies at Saturn. It provides us with a unique opportunity to conduct an in situ investigation of a dynamical system that is in some ways analogous to the dusty plasma environments in which planetary systems form. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号