首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2253篇
  免费   10篇
  国内免费   10篇
航空   1090篇
航天技术   815篇
综合类   10篇
航天   358篇
  2021年   22篇
  2018年   38篇
  2017年   21篇
  2016年   26篇
  2014年   48篇
  2013年   57篇
  2012年   49篇
  2011年   91篇
  2010年   64篇
  2009年   90篇
  2008年   97篇
  2007年   52篇
  2006年   43篇
  2005年   57篇
  2004年   70篇
  2003年   72篇
  2002年   37篇
  2001年   57篇
  2000年   39篇
  1999年   47篇
  1998年   67篇
  1997年   42篇
  1996年   67篇
  1995年   79篇
  1994年   55篇
  1993年   49篇
  1992年   64篇
  1991年   30篇
  1990年   19篇
  1989年   49篇
  1988年   23篇
  1987年   20篇
  1986年   21篇
  1985年   83篇
  1984年   53篇
  1983年   53篇
  1982年   60篇
  1981年   72篇
  1980年   21篇
  1979年   26篇
  1978年   26篇
  1977年   26篇
  1976年   20篇
  1975年   20篇
  1974年   20篇
  1973年   11篇
  1972年   14篇
  1970年   18篇
  1969年   19篇
  1967年   10篇
排序方式: 共有2273条查询结果,搜索用时 15 毫秒
171.
Vannaroni  G.  Dobrowolny  M.  De Venuto  F. 《Space Debris》1999,1(3):159-172
Electrodynamic tethers have been recently proposed for satellite and rocket upper stage deorbiting to mitigate the debris problem at Low Earth Orbits (LEOs). The deorbiting performance of several electrodynamic tethers, where the electron collection from the ionosphere is obtained with either simple bare wires or bare wires terminated with conducting spherical collectors, was analyzed and compared. Our results indicate that the use of the spherical collectors at the positive termination of the system significantly enhances the deorbiting capabilities of the electrodynamic bare tethers.  相似文献   
172.
173.
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”).  相似文献   
174.
Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, −20, and −80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.  相似文献   
175.
The detection of a bright optical emission measured with good temporal resolution during the prompt phase makes GRB 060111B a rare event that is especially useful for constraining theories of the prompt optical emission. Comparing this burst with other GRBs with evidence of optical peaks, we find that the optical peak epoch (tp) is anti-correlated with the high energy burst energetic assuming an isotropic energy release (Eiso) in agreement with Liang et al. (2009), and that the steeper is the post-peak afterglow decay, the less is the agreement with the correlation. GRB 060111B is among the latters and it does not match the correlation. The Cannonball scenario is also discussed and we find that this model cannot be excluded for GRB 060111B.  相似文献   
176.
Understanding transport of thermal and suprathermal particles is a fundamental issue in laboratory, solar-terrestrial, and astrophysical plasmas. For laboratory fusion experiments, confinement of particles and energy is essential for sustaining the plasma long enough to reach burning conditions. For solar wind and magnetospheric plasmas, transport properties determine the spatial and temporal distribution of energetic particles, which can be harmful for spacecraft functioning, as well as the entry of solar wind plasma into the magnetosphere. For astrophysical plasmas, transport properties determine the efficiency of particle acceleration processes and affect observable radiative signatures. In all cases, transport depends on the interaction of thermal and suprathermal particles with the electric and magnetic fluctuations in the plasma. Understanding transport therefore requires us to understand these interactions, which encompass a wide range of scales, from magnetohydrodynamic to kinetic scales, with larger scale structures also having a role. The wealth of transport studies during recent decades has shown the existence of a variety of regimes that differ from the classical quasilinear regime. In this paper we give an overview of nonclassical plasma transport regimes, discussing theoretical approaches to superdiffusive and subdiffusive transport, wave–particle interactions at microscopic kinetic scales, the influence of coherent structures and of avalanching transport, and the results of numerical simulations and experimental data analyses. Applications to laboratory plasmas and space plasmas are discussed.  相似文献   
177.
Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following:1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions.2. Space launches are benign with respect to environmental impacts.3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change.4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space.5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products.At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of the data acquisition step, which is at the very beginning of the information stream leading to decision and action, will enhance coherence in the information stream and strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions in the context of sustainable management of Earth's resources. Taking each assumption in turn, we find the following:(1) Space debris may limit access to Low Earth Orbit over the next decades.(2) Relatively speaking, given that they're rare event, space launches may be benign, but study is merited on upper stratospheric and exospheric layers given the chemical activity associated with rocket combustion by-products.(3) Minimization of Type II error should be considered in situations where minimization of Type I error greatly hampers or precludes our ability to correct the environmental condition being studied.(4) In certain situations, airborne collects may be less expensive and more environmentally benign, and comparative studies should be done to determine which path is wisest.(5) International cooperation and data sharing will reduce instrument and launch costs and mission redundancy. Given fiscal concerns of most of the major space agencies – e.g. NASA, ESA, CNES – it seems prudent to combine resources.  相似文献   
178.
In 2013 and 2015, investigations of the internal solar wind were carried out using the method of two-frequency radio sounding by signals from the Mars Express European spacecraft. The values of the S- and X-bands’ frequency and the differential frequency were registered with a sampling rate of 1s at the American and European networks of ground-based tracking stations. The spatial distribution of the frequency fluctuation’s level has been studied. It has been shown that the intensity of frequency fluctuation considerably decreases at high heliolatitudes. In some radio sounding sessions, quasiperiodic oscillations of sub-mHz band have been observed in the temporal spectra of frequency fluctuations; they are supposed to be associated with the density inhomogeneities, the sizes of which are close to the turbulence outer scale.  相似文献   
179.
Verification of arms control treaties is essential to provide adequate international confidence in treaty compliance. This Viewpoint underlines the responsibility of non-superpower countries to become more closely involved in space surveillance of treaties to which they are parties. In Canada, Paxsat research has focused on two potential applications of space-based remote sensing to multi-lateral arms control verification. The necessary technology is readily available in non-superpower countries for the Paxsat concept to be put into operation.  相似文献   
180.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号