首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2489篇
  免费   10篇
  国内免费   11篇
航空   1212篇
航天技术   855篇
综合类   10篇
航天   433篇
  2021年   27篇
  2018年   45篇
  2017年   22篇
  2016年   27篇
  2014年   52篇
  2013年   67篇
  2012年   58篇
  2011年   111篇
  2010年   69篇
  2009年   102篇
  2008年   112篇
  2007年   68篇
  2006年   51篇
  2005年   70篇
  2004年   75篇
  2003年   82篇
  2002年   40篇
  2001年   61篇
  2000年   44篇
  1999年   53篇
  1998年   70篇
  1997年   44篇
  1996年   70篇
  1995年   80篇
  1994年   56篇
  1993年   51篇
  1992年   65篇
  1991年   31篇
  1990年   21篇
  1989年   53篇
  1988年   24篇
  1987年   25篇
  1986年   22篇
  1985年   90篇
  1984年   57篇
  1983年   54篇
  1982年   62篇
  1981年   73篇
  1980年   24篇
  1979年   27篇
  1978年   27篇
  1977年   26篇
  1976年   21篇
  1975年   20篇
  1974年   21篇
  1972年   14篇
  1970年   18篇
  1969年   20篇
  1967年   18篇
  1966年   19篇
排序方式: 共有2510条查询结果,搜索用时 31 毫秒
181.
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites.  相似文献   
182.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
183.
Messenger  S.  Stadermann  F.J.  Floss  C.  Nittler  L.R.  Mukhopadhyay  S. 《Space Science Reviews》2003,106(1-4):155-172
Interplanetary dust particles collected in the stratosphere frequently exhibit enrichments in deuterium (D) and 15N relative to terrestrial materials. These effects are most likely due to the preservation of presolar interstellar materials. While the elevated D/H ratios probably resulted from mass fractionation during chemical reactions at very low < 100 K temperatures, the origin of the N isotopic anomalies remains unresolved. The bulk of the N-bearing material may have obtained its isotopic signatures from low temperature chemistry, but a nucleosynthetic origin is also possible. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
184.
Le Traon  P.Y.  Hernandez  F.  Rio  M.H.  Davidson  F. 《Space Science Reviews》2003,108(1-2):239-249
With a precise geoid, GOCE will allow an estimation of absolute dynamic topography from altimetry. The projected benefits to operational oceanography and its applications are analyzed herein. After a brief overview of operational oceanography, we explain how the new geoids will be used in the future to improve real time altimeter products and to better constrain modelling and data assimilation systems. A significant impact is expected both for mesoscale (e.g. better estimations and forecasts of currents for pollution monitoring, marine safety, offshore industry) and climate (better initialization of coupled ocean/atmosphere models) applications. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
185.
We review observations from Voyager 2 of CIRs and merged CIRs in the outer heliosphere. The rather simple characteristics of the CIR-associated changes in plasma, magnetic field, and particles become more complex as observations are made at greater and greater distances. Pickup ions from charge exchange undoubtedly play an important role in the structure, but the full details are not yet understood. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
186.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
187.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
188.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
189.
190.
Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial deuterium enrichment in all organic fractions; Some fractions significantly enriched in nitrogen-15; Modest excesses of L-enantiomers in some racemisation-resistant molecules but no general enantiomeric preference. Despite much speculation about the possible role of Fischer-Tropsch catalytic hydrogenation of CO in production of organic molecules in the solar nebula, no convincing evidence for such material has been found in meteorites. A similarity between some meteoritic organics and those produced by Miller-Urey discharge synthesis may reflect involvement of common intermediates rather than the operation of electric discharges in the early solar system. Meteoritic organic matter constitutes a useful, but not exact, guide to what we shall find with in situ analytical and sample-return missions to cometary nuclei. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号