首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7115篇
  免费   18篇
  国内免费   38篇
航空   3297篇
航天技术   2631篇
综合类   27篇
航天   1216篇
  2021年   67篇
  2019年   47篇
  2018年   141篇
  2017年   95篇
  2016年   82篇
  2015年   34篇
  2014年   158篇
  2013年   194篇
  2012年   185篇
  2011年   280篇
  2010年   188篇
  2009年   305篇
  2008年   360篇
  2007年   197篇
  2006年   170篇
  2005年   206篇
  2004年   206篇
  2003年   237篇
  2002年   144篇
  2001年   223篇
  2000年   149篇
  1999年   169篇
  1998年   198篇
  1997年   147篇
  1996年   185篇
  1995年   241篇
  1994年   216篇
  1993年   124篇
  1992年   182篇
  1991年   71篇
  1990年   67篇
  1989年   155篇
  1988年   60篇
  1987年   57篇
  1986年   73篇
  1985年   228篇
  1984年   174篇
  1983年   140篇
  1982年   178篇
  1981年   207篇
  1980年   63篇
  1979年   50篇
  1978年   59篇
  1977年   54篇
  1976年   46篇
  1975年   43篇
  1974年   52篇
  1972年   34篇
  1970年   40篇
  1969年   39篇
排序方式: 共有7171条查询结果,搜索用时 437 毫秒
381.
Between its launch in October 1990 and the end of 1993, approximately 160 fast collisionless shock waves were observed in the solar wind by the Ulysses space probe. During the in-ecliptic part of the mission, to February 1992, the observed shock waves were first caused mainly by solar transient events following the solar maximum and the reorganisation of the large scale coronal fields. With the decay in solar activity, relatively stable Corotating Interaction Regions (CIRs) were observed betwen 3 and 5.4 AU, each associated with at least one forwardreverse shock pair. During the out-of-ecliptic phase of the orbit, from February 1992 onwards, CIRs and shock pairs associated with them continued to dominate the observations. From July 1992, Ulysses encountered the fast solar wind flow from the newly developed southern polar coronal hole, and from May 1993 remained in the unipolar magnetic region associated with this coronal hole. At latitudes beyond 30°, CIRs were associated almost exclusively with reverse shocks only. A comprehensive list of shock waves identified in the magnetic field and solar wind plasma data from Ulysses is given in Table 1. The principal characteristics were determined mainly from the magnetic field data. General considerations concerning the determination of shock characteristics are outlined in the Introduction.  相似文献   
382.
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components.  相似文献   
383.
384.
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20.  相似文献   
385.
386.
The theory of shock acceleration of energetic particles is briefly discussed and reviewed with an emphasis on clarifying the apparent distinction between the V × B and Fermi mechanisms. Attention is restricted to those situations in which the energetic particles do not themselves influence the given shock structure. In particular, application of the theory to the acceleration of energetic particles in corotating interaction regions (CIR) in the solar wind is presented. Here particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIRs. The model is able to account for the observed exponential spectra at Earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.Calculations and resulting energy spectra are also presented for shock acceleration of energetic particles in large solar flare events. Based on the simplifying assumption that the shock evolves as a spherically symmetric Sedov blast wave, the calculation yields the time-integrated spectrum of particles initially injected at the shock which eventually escape ahead of the shock into interplanetary space. The spectra are similar to those observed at Earth. Finally further applications are suggested.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   
387.
388.
389.
390.
On July 5.–6. 1983, during the EXOSAT performance verification (PV) and calibration phase, a raster scan of Cygnus X-2 was performed. In contrast to the previously observed smooth intensity variations on timescales of hours, the source revealed a behaviour unknown until now: active periods with high energy flares recurring on time scales of 300–500 s were interrupted by quiet periods of several hours. At all intensity levels the source spectra clearly require a two component continuum (blackbody + thermal bremsstrahlung). In addition, a weak iron emission line with equivalent widths between 39 an 70 eV was detected. The source has a much harder spectrum during the flares than during quiet periods, indicating drastic temperature changes within the emission region, while the absolute iron line flux does not vary. From the spectral characteristics it becomes clear that self-comptonization of the thermal bremsstrahlung spectrum plays an important role. The time variability and spectral behaviour in this peculiar state allow Cyg X-2 to be classified as a Low Mass X-ray Binary System (LMXB) very similar to the prototype of this class, Sco X-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号