全文获取类型
收费全文 | 2257篇 |
免费 | 10篇 |
国内免费 | 10篇 |
专业分类
航空 | 1092篇 |
航天技术 | 817篇 |
综合类 | 10篇 |
航天 | 358篇 |
出版年
2021年 | 22篇 |
2018年 | 38篇 |
2017年 | 21篇 |
2016年 | 26篇 |
2014年 | 48篇 |
2013年 | 57篇 |
2012年 | 49篇 |
2011年 | 91篇 |
2010年 | 64篇 |
2009年 | 90篇 |
2008年 | 98篇 |
2007年 | 52篇 |
2006年 | 43篇 |
2005年 | 57篇 |
2004年 | 70篇 |
2003年 | 72篇 |
2002年 | 37篇 |
2001年 | 57篇 |
2000年 | 39篇 |
1999年 | 47篇 |
1998年 | 67篇 |
1997年 | 42篇 |
1996年 | 67篇 |
1995年 | 79篇 |
1994年 | 55篇 |
1993年 | 49篇 |
1992年 | 64篇 |
1991年 | 30篇 |
1990年 | 19篇 |
1989年 | 49篇 |
1988年 | 23篇 |
1987年 | 20篇 |
1986年 | 21篇 |
1985年 | 85篇 |
1984年 | 53篇 |
1983年 | 53篇 |
1982年 | 60篇 |
1981年 | 72篇 |
1980年 | 21篇 |
1979年 | 26篇 |
1978年 | 27篇 |
1977年 | 26篇 |
1976年 | 20篇 |
1975年 | 20篇 |
1974年 | 20篇 |
1973年 | 11篇 |
1972年 | 14篇 |
1970年 | 18篇 |
1969年 | 19篇 |
1967年 | 10篇 |
排序方式: 共有2277条查询结果,搜索用时 15 毫秒
41.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future. 相似文献
42.
Ergun R.E. Carlson C.W. Mozer F.S. Delory G.T. Temerin M. McFadden J.P. Pankow D. Abiad R. Harvey P. Wilkes R. Primbsch H. Elphic R. Strangeway R. Pfaff R. Cattell C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations. 相似文献
43.
V. A. Sadovnichiy A. M. Amelyushkin V. Angelopoulos V. V. Bengin V. V. Bogomolov G. K. Garipov E. S. Gorbovskoy B. Grossan P. A. Klimov B. A. Khrenov J. Lee V. M. Lipunov G. W. Na M. I. Panasyuk I. H. Park V. L. Petrov C. T. Russell S. I. Svertilov E. A. Sigaeva G. F. Smoot Yu. Shprits N. N. Vedenkin I. V. Yashin 《Cosmic Research》2013,51(6):427-433
At present, the Institute of Nuclear Physics of Moscow State University, in cooperation with other organizations, is preparing space experiments onboard the Lomonosov satellite. The main goal of this mission is to study extreme astrophysical phenomena such as cosmic gamma-ray bursts and ultra-high-energy cosmic rays. These phenomena are associated with the processes occurring in the early universe in very distant astrophysical objects, therefore, they can provide information on the first stages of the evolution of the universe. This paper considers the main characteristics of the scientific equipment aboard the Lomonosov satellite. 相似文献
44.
45.
Summary The observational features of the arc are fairly well established. At present, the thermal conduction model appears to explain the red arc features most consistently, but it must be noted that a soft electron flux would give very similar results. Ion temperature measurements in the vicinity of an arc, which should be forthcoming in the very near future, can establish conclusively whether transverse electric fields play any important role in the formation of the arcs. Accepting the assumption that the arcs are the result of energy flowing down from the plasmasphere, the major remaining question is: where does the energy come from and how does it get into the plasmasphere? The various proposed mechanisms discussed in the previous chapter appear feasible, but much work needs to be done before this problem is completely resolved.On leave from the Department of Electrical Engineering, The University of Michigan, Ann Arbor.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
46.
The leakage reactance of the machine is expressed as an equation involving slot leakage, end-connection leakage, differential leakage, stator-halves leakage, and tooth-top leakage reactance. This leakage reactance equation, or objective function, is then minimized under suitable constraints. Geometric programming is used to carry through the optimization procedure. A computer program is developed and applied to find the optimum leakage reactance for a 95 kVA, 208 V, wye-connected, 40 800 r/min aerospace alternator, using 8-, 10-, and 12-pole machines. 相似文献
47.
Yu. F. Gortyshov V. M. Gureev R. Sh. Misbakhov I. F. Gumerov A. P. Shaikin 《Russian Aeronautics (Iz VUZ)》2009,52(4):488-490
We present the results of experimental studies of the fuel hydrogen additive influence on the characteristics of a gas-piston
engine converted for operation by natural gas under changes of an ignition advance angle (IAA). The results of investigations
were used to determine the influence of the hydrogen additive on the effective engine efficiency and fuel consumption under
IAA changes. 相似文献
48.
John F. Kerridge 《Space Science Reviews》1991,56(1-2):177-184
Carbon isotope ratios have been measured for CN in the coma of comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of 13C/12C values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus. The next decade should substantially improve our understanding of the distribution of C, H, N, and O isotopes in cometary organics. The isotopic composition of meteoritic organic matter is better understood and can serve as a useful analog for the cometary case. 相似文献
49.
50.
P. R. Goode L. V. Didkovsky K. G. Libbrecht M. F. Woodard 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,29(12):1-1898
Solar oscillations provide the most accurate measures of cycle dependent changes in the sun, and the Solar and Heliospheric Observatory/Michelson Doppler Imager (MDI) data are the most precise of all. They give us the opportunity to address the real challenge — connecting the MDI seismic measures to observed characteristics of the dynamic sun. From inversions of the evolving MDI data, one expects to determine the nature of the evolution, through the solar cycle, of the layers just beneath the sun's surface. Such inversions require one to guess the form of the causal perturbation — usually beginning with asking whether it is thermal or magnetic. Matters here are complicated because the inversion kernels for these two are quite similar, which means that we don't have much chance of disentangling them by inversion. However, since the perturbation lies very close to the solar surface, one can use synoptic data as an outer boundary condition to fix the choice. It turns out that magnetic and thermal synoptic signals are also quite similar. Thus, the most precise measure of the surface is required.
We argue that the most precise synoptic data come from the Big Bear Solar Observatory (BBSO) Solar Disk Photometer (SDP). A preliminary analysis of these data implies a magnetic origin of the cycle-dependent sub-surface perturbation. However, we still need to do a more careful removal of the facular signal to determine the true thermal signal. 相似文献