首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5016篇
  免费   15篇
  国内免费   20篇
航空   2622篇
航天技术   1604篇
综合类   190篇
航天   635篇
  2021年   33篇
  2019年   27篇
  2018年   73篇
  2017年   36篇
  2016年   43篇
  2014年   82篇
  2013年   107篇
  2012年   114篇
  2011年   174篇
  2010年   109篇
  2009年   190篇
  2008年   204篇
  2007年   118篇
  2006年   89篇
  2005年   89篇
  2004年   118篇
  2003年   150篇
  2002年   196篇
  2001年   214篇
  2000年   98篇
  1999年   130篇
  1998年   156篇
  1997年   102篇
  1996年   140篇
  1995年   172篇
  1994年   147篇
  1993年   96篇
  1992年   123篇
  1991年   58篇
  1990年   63篇
  1989年   126篇
  1988年   60篇
  1987年   63篇
  1986年   51篇
  1985年   154篇
  1984年   124篇
  1983年   111篇
  1982年   121篇
  1981年   158篇
  1980年   57篇
  1979年   47篇
  1978年   57篇
  1977年   38篇
  1976年   42篇
  1975年   50篇
  1974年   40篇
  1972年   49篇
  1971年   49篇
  1970年   33篇
  1969年   37篇
排序方式: 共有5051条查询结果,搜索用时 15 毫秒
151.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
152.
We developed two types of hybrid terminals that can provide both satellite communication and position determination services in one system. One terminal uses the single channel per carrier (SCPC) technique and the other uses the spread spectrum (SS) technique. To evaluate the performance of the two systems, we carried out experiments in Japan and in the Pacific Ocean using two geostationary satellites, ETS-V (150°E) and Inmarsat (180°E). The ranging accuracy between the mobile terminals and the base station via the satellites was found to be about 200 m using the SCPC system and about 10 m using the SS system. The measured positioning accuracy was about 1 km in the SCPC system and about 600 m in the SS system when experiments were carried out near Japan. The experimental results show that the positioning errors were mainly caused by the orbital determination errors of the two satellites. Presented here are the configurations and features of the SCPC and SS terminals, the experimental system, and the experimental results  相似文献   
153.
Human computational vision models that attempt to account for the dynamic perception of egomotion and relative depth typically assume a common three-stage process: first, compute the optical flow field based on the dynamically changing image; second, estimate the egomotion states based on the flow; and third, estimate the relative depth/shape based on the egomotion states and possibly on a model of the viewed surface. We propose a model more in line with recent work in human vision, employing multistage integration. Here the dynamic image is first processed to generate spatial and temporal image gradients that drive a mutually interconnected state estimator and depth/shape estimator. The state estimator uses the image gradient information in combination with a depth/shape estimate of the viewed surface and an assumed model of the viewer's dynamics to generate current state estimates; in tandem, the depth/shape estimator uses the image gradient information in combination with the viewer's state estimate and assumed shape model to generate current depth/shape estimates. In this paper, we describe the model and compare model predictions with empirical data.  相似文献   
154.
This paper proposes a novel landing gear for spacecraft that allows a weight reduction due to using deformable crash legs. Numerical simulation of the landing process was performed.  相似文献   
155.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
156.
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun’s quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.  相似文献   
157.
158.
New Horizons: Anticipated Scientific Investigations at the Pluto System   总被引:1,自引:0,他引:1  
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).  相似文献   
159.
Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long length scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.  相似文献   
160.
We consider some general problems of improving the strength characteristics of folded cores as well as the corresponding techniques for modifying the core material polymer surfaces with the use of nanotechnologies and the “mass-strength” criteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号