首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
航空   32篇
航天技术   8篇
航天   18篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1990年   1篇
  1987年   1篇
  1980年   1篇
  1968年   1篇
排序方式: 共有58条查询结果,搜索用时 390 毫秒
41.
Panning  Mark P.  Lognonné  Philippe  Bruce Banerdt  W.  Garcia  Raphaël  Golombek  Matthew  Kedar  Sharon  Knapmeyer-Endrun  Brigitte  Mocquet  Antoine  Teanby  Nick A.  Tromp  Jeroen  Weber  Renee  Beucler  Eric  Blanchette-Guertin  Jean-Francois  Bozdağ  Ebru  Drilleau  Mélanie  Gudkova  Tamara  Hempel  Stefanie  Khan  Amir  Lekić  Vedran  Murdoch  Naomi  Plesa  Ana-Catalina  Rivoldini  Atillio  Schmerr  Nicholas  Ruan  Youyi  Verhoeven  Olivier  Gao  Chao  Christensen  Ulrich  Clinton  John  Dehant  Veronique  Giardini  Domenico  Mimoun  David  Thomas Pike  W.  Smrekar  Sue  Wieczorek  Mark  Knapmeyer  Martin  Wookey  James 《Space Science Reviews》2017,211(1-4):611-650
Space Science Reviews - The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure,...  相似文献   
42.
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ~500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ~4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.  相似文献   
43.
Space Science Reviews - The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument onboard NASA’s Perseverance...  相似文献   
44.
We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field (\(17^{\circ}\times 12^{\circ}\)) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54–88 nm, are the Oii emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a 0 . ° 26 Open image in new window imaging resolution perpendicular to the spectral dispersion direction with a large (\(12^{\circ} \)) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of \(R\sim25\) at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements.  相似文献   
45.
Space Science Reviews - Interstellar dust from the Local Interstellar Cloud was detected unambiguously for the first time in 1992 (Grün et al. in Nature 362:428–430,...  相似文献   
46.
SWAN is the first space instrument dedicated to the monitoring of the latitude distribution of the solar wind by the Lyman alpha method. The distribution of interstellar H atoms in the solar system is determined by their destruction during ionization charge-exchange with solar wind protons. Maps of sky Ly-α emission have been recorded regularly since launch. The upwind maximum emission region deviates strongly from the pattern that would be expected from a solar wind that is constant with latitude. It is divided in two lobes by a depression aligned with the solar equatorial plane, called the Lyman-alpha groove, due to enhanced ionization along the neutral sheet where the slow and dense solar wind is concentrated. The groove (or the anisotropy) is more pronounced in 1997 than in 1996, but it then decreases between 1997 and 1998. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
47.
48.
49.
The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated ~9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft’s trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of ?84.6796°, ?48.7093°, with a 1σ uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is ?84.719°, ?49.61°, with a 1σ uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region.  相似文献   
50.
Drag coefficient modeling for grace using Direct Simulation Monte Carlo   总被引:2,自引:0,他引:2  
Drag coefficient is a major source of uncertainty in predicting the orbit of a satellite in low Earth orbit (LEO). Computational methods like the Test Particle Monte Carlo (TPMC) and Direct Simulation Monte Carlo (DSMC) are important tools in accurately computing physical drag coefficients. However, the methods are computationally expensive and cannot be employed real time. Therefore, modeling of the physical drag coefficient is required. This work presents a technique of developing parameterized drag coefficients models using the DSMC method. The technique is validated by developing a model for the Gravity Recovery and Climate Experiment (GRACE) satellite. Results show that drag coefficients computed using the developed model for GRACE agree to within 1% with those computed using DSMC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号