首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
航空   32篇
航天技术   8篇
航天   18篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1990年   1篇
  1987年   1篇
  1980年   1篇
  1968年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
41.
The Jupiter Energetic Particle Detector Instruments (JEDI) on the Juno Jupiter polar-orbiting, atmosphere-skimming, mission to Jupiter will coordinate with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter’s polar regions, and specifically to understand the generation of Jupiter’s powerful aurora. JEDI comprises 3 nearly-identical instruments and measures at minimum the energy, angle, and ion composition distributions of ions with energies from H:20 keV and O: 50 keV to >1 MeV, and the energy and angle distribution of electrons from <40 to >500 keV. Each JEDI instrument uses microchannel plates (MCP) and thin foils to measure the times of flight (TOF) of incoming ions and the pulse height associated with the interaction of ions with the foils, and it uses solid state detectors (SSD’s) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground. Here we describe the science objectives of JEDI, the science and measurement requirements, the challenges that the JEDI team had in meeting these requirements, the design and operation of the JEDI instruments, their calibrated performances, the JEDI inflight and ground operations, and the initial measurements of the JEDI instruments in interplanetary space following the Juno launch on 5 August 2011. Juno will begin its prime science operations, comprising 32 orbits with dimensions 1.1×40 RJ, in mid-2016.  相似文献   
42.
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ~500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ~4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.  相似文献   
43.
Space Science Reviews - The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument onboard NASA’s Perseverance...  相似文献   
44.
45.
46.
The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated ~9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft’s trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of ?84.6796°, ?48.7093°, with a 1σ uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is ?84.719°, ?49.61°, with a 1σ uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region.  相似文献   
47.
Drag coefficient modeling for grace using Direct Simulation Monte Carlo   总被引:2,自引:0,他引:2  
Drag coefficient is a major source of uncertainty in predicting the orbit of a satellite in low Earth orbit (LEO). Computational methods like the Test Particle Monte Carlo (TPMC) and Direct Simulation Monte Carlo (DSMC) are important tools in accurately computing physical drag coefficients. However, the methods are computationally expensive and cannot be employed real time. Therefore, modeling of the physical drag coefficient is required. This work presents a technique of developing parameterized drag coefficients models using the DSMC method. The technique is validated by developing a model for the Gravity Recovery and Climate Experiment (GRACE) satellite. Results show that drag coefficients computed using the developed model for GRACE agree to within 1% with those computed using DSMC.  相似文献   
48.
Orbital debris environment models are essential in predicting the characteristics of the entire debris environment, especially for altitude and size regimes where measurement data is sparse. Most models are also used to assess mission collision risk. The IDES (Integrated Debris Evolution Suite) simulation model has recently been upgraded by including a new sodium–potassium liquid coolant droplet source model and a new historical launch database. These and other features of IDES are described in detail. The accuracy of the IDES model is evaluated over a wide range of debris sizes by comparing model predictions to three major types of debris measurement data in low Earth orbit. For the large-size debris population, the model is compared with the spatial density distribution of the United States (US) Space Command Catalog. A radar simulation model is employed to predict the detection rates of mid-size debris in the field of view of the US Haystack radar. Finally, the small-size impact flux relative to a surface of the retrieved Long Duration Exposure Facility (LDEF) spacecraft is predicted. At sub-millimetre sizes, the model currently under-predicts the debris environment encountered at low altitudes by approximately an order of magnitude. This is because other small-size debris sources, such as paint flakes have not yet been characterised. Due to the model enhancements, IDES exhibits good accuracy when predicting the debris environment at decimetre and centimetre sizes. Therefore, the validated initial conditions and the high fidelity future traffic model enables IDES to make long-term debris environment projections with more confidence.  相似文献   
49.
Mars is a compelling astrobiological target, and a human mission would provide an opportunity to collect immense amounts of scientific data. Exploration alone, however, cannot justify the increased risk. Instead, three factors drive a human mission: economics, education, and exploration. A human mission has a unique potential to inspire the next generation of young people to enter critically needed science and engineering disciplines. A mission is economically feasible, and the research and development program put in place for a human mission would propel growth in related high-technology industries. The main hurdles are human physiological responses to 1–2 years of radiation and microgravity exposure. However, enabling technologies are sufficiently mature in these areas that they can be developed within a few decade timescale. Hence, the decision of whether or not to undertake a human mission to Mars is a political decision, and thus, educational and economic benefits are the crucial factors.  相似文献   
50.
Human factor engineering standards and considerations for the International Space Station are reviewed. Factors considered for laboratory and habitation modules, workstations, visual displays, and EVA worksites are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号