首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6780篇
  免费   38篇
  国内免费   20篇
航空   3225篇
航天技术   2419篇
综合类   20篇
航天   1174篇
  2021年   60篇
  2019年   43篇
  2018年   143篇
  2017年   98篇
  2016年   97篇
  2015年   57篇
  2014年   173篇
  2013年   191篇
  2012年   199篇
  2011年   257篇
  2010年   181篇
  2009年   310篇
  2008年   380篇
  2007年   193篇
  2006年   157篇
  2005年   194篇
  2004年   165篇
  2003年   221篇
  2002年   144篇
  2001年   230篇
  2000年   120篇
  1999年   151篇
  1998年   176篇
  1997年   129篇
  1996年   153篇
  1995年   202篇
  1994年   210篇
  1993年   103篇
  1992年   148篇
  1991年   80篇
  1990年   62篇
  1989年   150篇
  1988年   66篇
  1987年   65篇
  1986年   70篇
  1985年   163篇
  1984年   166篇
  1983年   129篇
  1982年   143篇
  1981年   192篇
  1980年   58篇
  1979年   58篇
  1978年   56篇
  1977年   47篇
  1976年   40篇
  1975年   48篇
  1974年   43篇
  1973年   42篇
  1972年   41篇
  1969年   37篇
排序方式: 共有6838条查询结果,搜索用时 15 毫秒
271.
The Radio Plasma Imager investigation on the IMAGE spacecraft   总被引:1,自引:0,他引:1  
Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Benson  R.F.  Fung  S.F.  Green  J.L.  Boardsen  S.  Taylor  W.W.L.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P. 《Space Science Reviews》2000,91(1-2):319-359
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique.  相似文献   
272.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   
273.
Tobias  S.M.  Weiss  N.O. 《Space Science Reviews》2000,94(1-2):153-160
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial.  相似文献   
274.
The ChemCam instrument on the Mars Science Laboratory rover Curiosity will use laser-induced breakdown spectroscopy (LIBS) to analyze major and minor element chemistry from sub-millimeter spot sizes, at ranges of ~1.5–7?m. To interpret the emission spectra obtained, ten calibration standards will be carried on the rover deck. Graphite, Ti?metal, and four glasses of igneous composition provide primary, homogeneous calibration targets for the laser. Four granular ceramic targets have been added to provide compositions closer to soils and sedimentary materials like those expected at the Gale Crater field site on Mars. Components used in making these ceramics include basalt, evaporite, and phyllosilicate materials that approximate the chemical compositions of detrital and authigenic constituents of clastic and evaporite sediments, including the elevated sulfate contents present in many Mars sediments and soils. Powdered components were sintered at low temperature (800?°C) with a small amount (9?wt.%) of lithium tetraborate flux to produce ceramics that retain volatile sulfur yet are durable enough for the mission. The ceramic targets are more heterogeneous than the pure element and homogenous glass standards but they provide standards with compositions more similar to the sedimentary rocks that will be Curiosity’s prime targets at Gale Crater.  相似文献   
275.
The scheme variants of implementing the thermal protection against heat flows being generated by the body of a high-temperature stationary gas turbine engine (GTE) are presented. The scheme of the experimental bench with a working section is given. Methodical approaches to the heat transfer calculation at different variants of forced and natural convection organization and under various operating conditions are described. The generalized results of the experiments carried out using a heat curtain being generated by porous injection are presented.  相似文献   
276.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
277.
With major emphasis on simulation, a university laboratory telerobotics facility permits problems to be approached by groups of graduate students. Helmet-mounded displays provide realism; the slaving of the display to the human operator's viewpoint gives a sense of `telepresence' that may be useful for prolonged tasks. Using top-down 3-D model control of distant images allows distant images to be reduced to a few parameters to update the model used for display to the human operator in a preview model to circumvent, in part, the communication delay. Also, the model can be used as a format for supervisory control and permit short-term local autonomous operations. Image processing algorithms can be made simpler and faster without trying to construct sensible images from the bottom. Control studies of telerobots lead to preferential manual control modes and, in this university environment, to basic paradigms for human motion and thence, perhaps, to redesign of robotic control, trajectory path planning, and rehabilitation prosthetics. Speculation as to future industrial drives for this telerobotic field suggests efficient roles for government agencies such as NASA  相似文献   
278.
A technique is presented for controlling multiple manipulators which are holding a single object and therefore form a closed kinematic chain. The object, which may or may not be in contact with a rigid environment, is assumed to be held rigidly by n robot end-effectors. The derivation is based on setting up constraint equations which reduce the 6×n degrees of freedom of n manipulators each having six joints. Additional constraint equations are considered when one or more degrees of freedom of the object is reduced due to external constraints. Utilizing the operational space dynamic equations, a decoupling controller is designed to control both the position and the interaction forces of the object with the environment. Simulation results for the control of a pair of two-link manipulators are presented  相似文献   
279.
The problem of minimum variance discrete-time state estimation of a continuous-time double integrator via noisy continuous-time measurements is considered. The error covariance matrices of this estimation are calculated and analyzed. The relations between these covariance matrices and the error covariance matrix of the optimal continuous-time filter are obtained, and a way for determining the required sampling period is proposed. A commonly used approximated model is investigated; it is shown to be inappropriate unless a specific improvement is introduced in the model  相似文献   
280.
Time-frequency hop codes based upon extended quadratic congruences   总被引:1,自引:0,他引:1  
Time-frequency hop codes are developed that can be used for coherent multiuser echolocation and asynchronous spread spectrum communication systems. They represent a compromise between Costas codes, which have nearly ideal autoambiguity but not so good cross-ambiguity properties, and linear congruential codes, which have nearly ideal cross-ambiguity but unattractive autoambiguity properties. Extended quadratic congruential code words are shown to have reasonably good autoambiguity and cross-ambiguity properties across the whole class of code sets considered. A uniform upper bound is placed on the entire cross-ambiguity function surface, and bounds are placed on the position and amplitude of spurious peaks in the autoambiguity function. These bounds depend on the time/bandwidth product and code length exclusively and lead naturally to a discussion of the design tradeoffs for these two parameters. Examples of typical autoambiguity and cross-ambiguity functions are given to illustrate the performance of the new codes  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号