全文获取类型
收费全文 | 9518篇 |
免费 | 45篇 |
国内免费 | 25篇 |
专业分类
航空 | 4658篇 |
航天技术 | 3283篇 |
综合类 | 208篇 |
航天 | 1439篇 |
出版年
2021年 | 62篇 |
2019年 | 64篇 |
2018年 | 137篇 |
2017年 | 86篇 |
2016年 | 81篇 |
2014年 | 184篇 |
2013年 | 241篇 |
2012年 | 207篇 |
2011年 | 313篇 |
2010年 | 205篇 |
2009年 | 351篇 |
2008年 | 422篇 |
2007年 | 253篇 |
2006年 | 222篇 |
2005年 | 258篇 |
2004年 | 215篇 |
2003年 | 293篇 |
2002年 | 275篇 |
2001年 | 365篇 |
2000年 | 178篇 |
1999年 | 237篇 |
1998年 | 267篇 |
1997年 | 201篇 |
1996年 | 273篇 |
1995年 | 320篇 |
1994年 | 296篇 |
1993年 | 164篇 |
1992年 | 211篇 |
1991年 | 109篇 |
1990年 | 101篇 |
1989年 | 233篇 |
1988年 | 96篇 |
1987年 | 98篇 |
1986年 | 106篇 |
1985年 | 312篇 |
1984年 | 275篇 |
1983年 | 202篇 |
1982年 | 225篇 |
1981年 | 301篇 |
1980年 | 86篇 |
1979年 | 72篇 |
1978年 | 81篇 |
1977年 | 81篇 |
1975年 | 88篇 |
1974年 | 75篇 |
1973年 | 63篇 |
1972年 | 75篇 |
1971年 | 68篇 |
1970年 | 75篇 |
1969年 | 74篇 |
排序方式: 共有9588条查询结果,搜索用时 0 毫秒
651.
One of the most important problems for performing a good design of the spacecraft attitude control law is connected to its robustness when some uncertainty parameters are present on the inertial and/or on the elastic characteristics of a satellite. These uncertainties are generally intrinsic on the modeling of complex structures and in the case of large flexible structures they can be also attributed to secondary effects associated to the elasticity. One of the most interesting issues in modeling large flexible space structures is associated to the evaluation of the inertia tensor which in general depends not only on the geometric ‘fixed’ characteristic of the satellite but also on its elastic displacements which of course in turn modify the ‘shape’ of the satellite. Usually these terms can be considered of a second order of magnitude if compared with the ones associated to the rigid part of a structure. However the increasing demand on the dimension of satellites due to the presence for instance of very large solar arrays (necessary to generate power) and/or large antennas has the necessity to investigate their effects on their global dynamic behavior in more details as a consequence. In the present paper a methodology based on classical Lagrangian approach coupled with a standard Finite Element tool has been used to derive the full dynamic equations of an orbiting flexible satellite under the actions of gravity, gravity gradient forces and attitude control. A particular attention has been paid to the study of the effects of flexibility on the inertial terms of the spacecraft which, as well known, influence its attitude dynamic behavior. Furthermore the effects of the attitude control authority and its robustness to the uncertainties on inertial and elastic parameters has been investigated and discussed. 相似文献
652.
653.
Yu. V. Klochkov A. P. Nikolaev A. A. Shubovich S. S. Marchenko 《Russian Aeronautics (Iz VUZ)》2013,56(4):327-334
In this paper, we present an algorithm for geometrically nonlinear finite element analysis of the shells of revolution. Use is made of the most proper algorithms for vector interpolation of displacements through the nodal unknowns and an efficient algorithm for obtaining the stress-strain increment relation at a step of loading. By comparing the results of analyzing a geometrically nonlinear shell of revolution obtained on the basis of the ANSYS software with the scalar interpolation of displacements with those obtained on the basis of an author-developed finite element, it has been shown that application of the FEM vector displacement interpolation leads to increasing the accuracy of the finite element solutions in analyzing the stress-strain state of the geometrically nonlinear shells. 相似文献
654.
E.S. Seo T. Anderson D. Angelaszek S.J. Baek J. Baylon M. Buénerd M. Copley S. Coutu L. Derome B. Fields M. Gupta J.H. Han I.J. Howley H.G. Huh Y.S. Hwang H.J. Hyun I.S. Jeong D.H. Kah K.H. Kang D.Y. Kim H.J. Kim K.C. Kim M.H. Kim K. Kwashnak J. Lee M.H. Lee J.T. Link L. Lutz A. Malinin A. Menchaca-Rocha J.W. Mitchell S. Nutter O. Ofoha H. Park I.H. Park J.M. Park P. Patterson J.R. Smith J. Wu Y.S. Yoon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented. 相似文献
655.
Els Peeters Nieves Leticia Martín-HernáNdez Nemesio J. RodríGuez-FernáNdez Xander Tielens 《Space Science Reviews》2005,119(1-4):273-292
An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates,
polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic capabilities illustrated and their implications
highlighted.
Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries:
France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA. 相似文献
656.
Saunders R.S. Arvidson R.E. Badhwar G.D. Boynton W.V. Christensen P.R. Cucinotta F.A. Feldman W.C. Gibbs R.G. Kloss C. Landano M.R. Mase R.A. McSmith G.W. Meyer M.A. Mitrofanov I.G. Pace G.D. Plaut J.J. Sidney W.P. Spencer D.A. Thompson T.W. Zeitlin C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months. 相似文献
657.
658.
Grasset O. Castillo-Rogez J. Guillot T. Fletcher L. N. Tosi F. 《Space Science Reviews》2017,212(1-2):835-875
Space Science Reviews - Space exploration and ground-based observations have provided outstanding evidence of the diversity and the complexity of the outer solar system. This work presents our... 相似文献
659.
E. Caroli J. B. Stephen G. Di Cocco L. Natalucci A. Spizzichino 《Space Science Reviews》1987,45(3-4):349-403
660.