全文获取类型
收费全文 | 6167篇 |
免费 | 29篇 |
国内免费 | 18篇 |
专业分类
航空 | 2878篇 |
航天技术 | 2200篇 |
综合类 | 14篇 |
航天 | 1122篇 |
出版年
2021年 | 46篇 |
2018年 | 100篇 |
2017年 | 83篇 |
2016年 | 80篇 |
2015年 | 40篇 |
2014年 | 113篇 |
2013年 | 171篇 |
2012年 | 148篇 |
2011年 | 228篇 |
2010年 | 167篇 |
2009年 | 242篇 |
2008年 | 303篇 |
2007年 | 178篇 |
2006年 | 133篇 |
2005年 | 182篇 |
2004年 | 171篇 |
2003年 | 193篇 |
2002年 | 133篇 |
2001年 | 208篇 |
2000年 | 109篇 |
1999年 | 139篇 |
1998年 | 164篇 |
1997年 | 122篇 |
1996年 | 146篇 |
1995年 | 189篇 |
1994年 | 211篇 |
1993年 | 100篇 |
1992年 | 127篇 |
1991年 | 59篇 |
1990年 | 67篇 |
1989年 | 128篇 |
1988年 | 52篇 |
1987年 | 48篇 |
1986年 | 65篇 |
1985年 | 187篇 |
1984年 | 173篇 |
1983年 | 135篇 |
1982年 | 130篇 |
1981年 | 215篇 |
1980年 | 45篇 |
1979年 | 52篇 |
1978年 | 57篇 |
1977年 | 51篇 |
1976年 | 40篇 |
1975年 | 60篇 |
1974年 | 49篇 |
1973年 | 47篇 |
1972年 | 57篇 |
1971年 | 37篇 |
1969年 | 37篇 |
排序方式: 共有6214条查询结果,搜索用时 15 毫秒
281.
Based on a simple model of a ground-based phased-array radar used for a multiple-target surveillance task, beam scheduling, positioning, and radar parameters like signal-to-noise ratio, track sharpness, and detection threshold have been optimized with respect to the radar/computer load induced by tracking. From this the minimum energy necessary for track maintenance during surveillance can be derived 相似文献
282.
Boland J.S. Pinson L.J. Peters E.G. Kane G.R. Malcolm W.W. 《IEEE transactions on aerospace and electronic systems》1979,(1):11-20
The problem of locating a reference image within a larger image using a correlation technique is discussed. Although the particular application discussed is that of locating a reference image obtained from one video sensor or a photograph, within the larger field of view obtained from a second video sensor in real time (i.e., at the TV field rate), the results are general and useful for a number of applications. The tradeoffs necessary to obtain real time correlat are discussed and their effect on correlation accuracy is given. 相似文献
283.
Development of thermal sensors and drilling systems for lunar and planetary regoliths 总被引:1,自引:0,他引:1
N.I. Kömle E. Kaufmann G. Kargl Yang Gao Xu Rui 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We consider some novel concepts for thermal properties experiments aboard lunar landers or rovers, that may lead to an improved understanding of both the structure of the lunar near surface layers and the lunar thermal history. The new instruments could be developed using the experience and heritage from recently developed systems, like the Rosetta Lander thermal conductivity experiment MUPUS and existing designs used for terrestrial measurements of thermal conductivity. We describe shortly the working principle of such sensors and the main challenges faced when using them in the airless regolith layers of the Moon or other airless bodies. In addition new concepts to create appropriate drill holes for thermal and other measurements in the lunar regolith are discussed. 相似文献
284.
Howard G. Levine A.D. Krikorian 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We present results on the analysis of 100 mL medium samples extracted from sterilized foam (Smithers-Oasis, Kent OH) used to support the growth of a representative dicotyledon (Haplopappus gracilis) and a representative monocotyledon (Hemerocallis cv Autumn Blaze) in NASA’s Plant Growth Unit (PGU) during a 5-day Space Shuttle flight and ground experiments. At recovery, the media remaining within replicate (n = 5) foam blocks (for both the spaceflight and ground experiments) were extracted under vacuum, filtered and subjected to elemental analyses. A unique aspect of this experiment was that all plants were either aseptically-generated tissue culture propagated plantlets or aseptic seedling clones. The design of the PGU facilitated the maintenance of asepsis throughout the mission (confirmed by post-flight microbial sampling) and thus any possible impact of microorganisms on medium composition was eliminated. Concentration levels of some elements remained the same, while some decreased and others increased. There was a significant two-fold difference between the final concentrations of potassium when the Earth-based and microgravity experiments were contrasted. 相似文献
285.
286.
W.D. Apel J.C. Arteaga-Velázquez K. Bekk M. Bertaina J. Blümer H. Bozdog I.M. Brancus E. Cantoni A. Chiavassa F. Cossavella K. Daumiller V. de Souza F. Di Pierro P. Doll R. Engel J. Engler M. Finger B. Fuchs D. Fuhrmann H.J. Gils R. Glasstetter C. Grupen A. Haungs D. Heck J.R. Hörandel D. Huber T. Huege K.-H. Kampert D. Kang H.O. Klages K. Link P. Łuczak M. Ludwig H.J. Mathes H.J. Mayer M. Melissas J. Milke B. Mitrica C. Morello J. Oehlschläger S. Ostapchenko N. Palmieri M. Petcu T. Pierog H. Rebel M. Roth H. Schieler S. Schoo F.G. Schröder O. Sima 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
287.
288.
Jouny I. Garber E.D. Moses R.L. 《IEEE transactions on aerospace and electronic systems》1995,31(1):69-77
Radar target identification is performed using time-domain bispectral features. The classification performance is compared with the performance of other classifiers that use either the impulse response or frequency domain response of the unknown target. The classification algorithms developed here are based on the spectral or the bispectral energy of the received backscatter signal. Classification results are obtained using simulated radar returns derived from measured scattering data from real radar targets. The performance of classifiers in the presence of additive Gaussian (colored or white), exponential noise, and Weibull noise are considered, along with cases where the azimuth position of the target is unknown. Finally, the effect on classification performance of responses horn extraneous point scatterers is investigated 相似文献
289.
A new class of techniques for multisensor fusion and target recognition is proposed using sequence comparison by dynamic programming and multiple model estimation. The objective is to fuse information on the kinematic state and “nonkinematic” signature of unclassified targets, assessing the joint likelihood of all observed events for recognition. Relationships are shown to previous efforts in pattern recognition and state estimation. This research applies “classical” speech processing-related and other sequence comparison methods to moving target recognition, extends the efforts of previous researchers through improved fusion with kinematic information, relates the proposed techniques to Bayesian theory, and applies parameter identification methods to target recognition for improved understanding of the subject in general. The proposed techniques are evaluated and compared with existing approaches using the method of generalized ambiguity functions, which lends to a form of Cramer-Rao lower bound for target recognition 相似文献
290.
S. M. Krimigis D. G. Mitchell D. C. Hamilton S. Livi J. Dandouras S. Jaskulek T. P. Armstrong J. D. Boldt A. F. Cheng G. Gloeckler J. R. Hayes K. C. Hsieh W.-H. Ip E. P. Keath E. Kirsch N. Krupp L. J. Lanzerotti R. Lundgren B. H. Mauk R. W. McEntire E. C. Roelof C. E. Schlemm B. E. Tossman B. Wilken D. J. Williams 《Space Science Reviews》2004,114(1-4):233-329
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20RS (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5∘ full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 RS every 2–3 h (every ∼10 min from ∼20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date. 相似文献