全文获取类型
收费全文 | 3264篇 |
免费 | 22篇 |
国内免费 | 10篇 |
专业分类
航空 | 1575篇 |
航天技术 | 1151篇 |
综合类 | 4篇 |
航天 | 566篇 |
出版年
2021年 | 26篇 |
2019年 | 23篇 |
2018年 | 55篇 |
2017年 | 51篇 |
2016年 | 46篇 |
2015年 | 26篇 |
2014年 | 71篇 |
2013年 | 91篇 |
2012年 | 82篇 |
2011年 | 119篇 |
2010年 | 79篇 |
2009年 | 137篇 |
2008年 | 153篇 |
2007年 | 99篇 |
2006年 | 71篇 |
2005年 | 92篇 |
2004年 | 90篇 |
2003年 | 99篇 |
2002年 | 72篇 |
2001年 | 115篇 |
2000年 | 65篇 |
1999年 | 68篇 |
1998年 | 87篇 |
1997年 | 58篇 |
1996年 | 93篇 |
1995年 | 112篇 |
1994年 | 111篇 |
1993年 | 48篇 |
1992年 | 71篇 |
1991年 | 34篇 |
1990年 | 32篇 |
1989年 | 76篇 |
1988年 | 28篇 |
1987年 | 24篇 |
1986年 | 35篇 |
1985年 | 90篇 |
1984年 | 91篇 |
1983年 | 65篇 |
1982年 | 66篇 |
1981年 | 99篇 |
1980年 | 19篇 |
1979年 | 25篇 |
1978年 | 29篇 |
1977年 | 27篇 |
1975年 | 29篇 |
1974年 | 23篇 |
1973年 | 21篇 |
1972年 | 20篇 |
1969年 | 20篇 |
1968年 | 18篇 |
排序方式: 共有3296条查询结果,搜索用时 15 毫秒
191.
D O Klymchuk E L Kordyum T V Vorobyova D K Chapman C S Brown 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(10):2283-2288
Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage. 相似文献
192.
L. E. Floyd D. K. Prinz P. C. Crane L. C. Herring 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,29(12):296-1962
The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) aboard the Upper Atmosphere Research Satellite (UARS) has been measuring solar UV irradiances since October 1991, a period which includes the decline of solar cycle 22 followed by the rise of cycle 23. Daily solar measurements include scans over the wavelength range 115–410 nm at 1.1 nm resolution. As expected, the measured time series of UV irradiances exhibit strong periodicities in solar cycle and solar rotation. For all wavelengths, the UV irradiance time series are similar to that of the Mg II core-to-wing ratio. During solar cycle 22, the irradiance of the strong Ly- line varied by more than a factor of two. The peak-to-peak irradiance variation declined with increasing wavelength, reaching 10% just below the Al edge at 208 nm. Between the Al edge and 250 nm the variation was 6–7%. Above 250 nm, the variation declines further until none is observed above 290 nm. Preliminary results for the first portion of cycle 23 indicate that the far UV below the Al edge is rising at about the same rate as the Mg II index while the irradiances in the Ly- emission line and for wavelengths longer than the Al edge are rising more slowly — even after accounting for the lower level of activity of cycle 23. 相似文献
193.
Neurobiological problems in long-term deep space flights. 总被引:1,自引:0,他引:1
M E Vazquez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):171-183
Future missions in space may involve long-term travel beyond the magnetic field of the Earth, subjecting astronauts to radiation hazards posed by solar flares and galactic cosmic rays, altered gravitation fields and physiological stress. Thus, it is critical to determine if there will be any reversible or irreversible, detrimental neurological effects from this prolonged exposure to space. A question of particular importance focuses on the long-term effects of the space environment on the central nervous system (CNS) neuroplasticity, with the potential acute and/or delayed effects that such perturbations might entail. Although the short-term effects of microgravity on neural control were studied on previous low earth orbit missions, the late consequences of stress in space, microgravity and space radiation have not been addressed sufficiently at the molecular, cellular and tissue levels. The possibility that space flight factors can interact influencing the neuroplastic response in the CNS looms critical issue not only to understand the ontogeny of the CNS and its functional integrity, but also, ultimately the performance of astronauts in extended space forays. The purpose of this paper is to review the neurobiological modifications that occur in the CNS exposed to the space environment, and its potential consequences for extended deep space flight. 相似文献
194.
P. Willis J.C. Ries N.P. Zelensky L. Soudarin H. Fagard E.C. Pavlis F.G. Lemoine 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
For Precise Orbit Determination of altimetry missions, we have computed a data set of DORIS station coordinates defined for specific time intervals called DPOD2005. This terrestrial reference set is an extension of ITRF2005. However, it includes all new DORIS stations and is more reliable, as we disregard stations with large velocity formal errors as they could contaminate POD computations in the near future. About 1/4 of the station coordinates need to be defined as they do not appear in the original ITRF2005 realization. These results were verified with available DORIS and GPS results, as the integrity of DPOD2005 is almost as critical as its accuracy. Besides station coordinates and velocities, we also provide additional information such as periods for which DORIS data should be disregarded for specific DORIS stations, and epochs of coordinate and velocity discontinuities (related to either geophysical events, equipment problem or human intervention). The DPOD model was tested for orbit determination for TOPEX/Poseidon (T/P), Jason-1 and Jason-2. Test results show DPOD2005 offers improvement over the original ITRF2005, improvement that rapidly and significantly increases after 2005. Improvement is also significant for the early T/P cycles indicating improved station velocities in the DPOD2005 model and a more complete station set. Following 2005 the radial accuracy and centering of the ITRF2005-original orbits rapidly degrades due to station loss. 相似文献
195.
L. Zampieri C. Germanà C. Barbieri G. Naletto A. Čadež I. Capraro A. Di Paola C. Facchinetti T. Occhipinti D. Ponikvar E. Verroi P. Zoccarato 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
We are developing fast photon-counter instruments to study the rapid variability of astrophysical sources by time tagging photon arrival times with unprecedented accuracy, making use of a Rubidium clock and GPS receiver. The first realization of such optical photon-counters, dubbed AquEYE (the Asiago Quantum Eye), was mounted in 2008 at the 182 cm Copernicus Observatory in Asiago. AquEYE observed the Crab pulsar several times and collected data of extraordinary quality that allowed us to perform accurate optical timing of the Crab pulsar and to study the pulse shape stability on a timescale from days to years with an excellent definition. Our results reinforce the evidence for decadal stability of the inclination angle between the spin and magnetic axis of the Crab pulsar. Future realizations of our instrument will make use of the Galileo Global Navigation Satellite System (GNSS) time signal. 相似文献
196.
G. Navarro I. Caballero L. Prieto A. Vázquez S. Flecha I.E. Huertas J. Ruiz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Seasonal-to-interannual variability of the winter-spring bloom in the Gulf of Cádiz, eastern North Atlantic, has been investigated using chlorophyll-a remote sensing (CHL). These data have been obtained from the GlobColour project; the temporal coverage extends from September 1997 to December 2010. In this study we develop a generic quantitative approach for describing the temporal variability in the shape of the winter-spring bloom within a region. Variability in both the timing and magnitude of the bloom in the basin has been evaluated as a function of physical properties in the water column such as Mixed Layer Depth (MLD, GODAS model), sea surface temperature (SST, from AVHRR radiometers), photosynthetically-active radiation (PAR, from ocean color data) and euphotic depth (Zeu, from ocean color data). The analysis indicated that the timing, size and duration of the phytoplankton bloom in this area are largely controlled by both meteorological and oceanographic conditions at different scales; this means that it is likely to vary widely from one year to another. 相似文献
197.
This paper considers the problem of locating a stationary coherent emitter via a single moving platform making frequency measurements in the presence of aperture state uncertainty. It is shown that the estimated emitter location is most sensitive to the receiving aperture velocity uncertainty. The required aperture velocity accuracy is determined through a noninfinitesimal perturbation analysis. A solution to location accuracy enhancement with a minimal hardware addition is attempted. It is shown that this can be achieved by mounting a high-resolution tri-axis microelectromechanical systems (MEMS) accelerometer at the aperture to measure its velocity, which can deviate significantly from that estimated by the on-board navigation system. The Doppler shifts of the GPS signal carrier frequency, whenever it can be acquired through the aperture, are also considered as a way to aid the aperture velocity measurement. A decentralized, federated processing method for the aperture velocity estimate referenced at the aperture, integrating all measurement data, is presented. An upper bound for the error of aperture velocity estimate is derived. The potential for significant accuracy enhancement for emitter location is demonstrated. 相似文献
198.
Alabaster C.M. Hughes E.J. Matthew J.H. 《IEEE transactions on aerospace and electronic systems》2003,39(3):990-1001
Evolutionary algorithms are applied to the optimization of pulse repetition frequency (PRF), for both eight-and nine PRFs, in medium PRF radar while considering the detailed effects of sidelobe clutter and many other technical factors. The algorithm presented also ensures that all the solutions produced are fully decodable and have no blind velocities. The evolutionary algorithm was able to identify near-optimum PRF sets for a realistic radar system with only a modest computational effort. 相似文献
199.
M. Pick A. Buttighoffer A. Kerdraon T. P. Armstrong E. C. Roelof S. Hoang L. J. Lanzerotti G. M. Simnett J. Lemen 《Space Science Reviews》1995,72(1-2):315-320
A remarkable streaming beam-like particle event of 60 keV-5 MeV ions and of 38–315 keV electrons has been reported previously. This event has been associated with the passage of a Coronal Mass Ejection (CME) over the Ulysses spacecraft on June 9–13, 1993. At this time, the spacecraft was located at 4.6 AU from the sun and at an heliolatitude of 32° south. It was proposed (Armstrong et al., 1994) that the particle injection source could have been of coronal origin. In this study, we analyse the solar activity during this period. We identify a region of solar radio noise storms in the corona and in particular, a flare on June 7 that presents all the required characteristics to produce the hot plasma beam observed in the interplanetary medium. 相似文献
200.