首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3253篇
  免费   26篇
  国内免费   13篇
航空   1573篇
航天技术   1150篇
综合类   4篇
航天   565篇
  2021年   26篇
  2019年   23篇
  2018年   55篇
  2017年   51篇
  2016年   45篇
  2015年   26篇
  2014年   71篇
  2013年   91篇
  2012年   82篇
  2011年   119篇
  2010年   79篇
  2009年   137篇
  2008年   153篇
  2007年   99篇
  2006年   71篇
  2005年   92篇
  2004年   90篇
  2003年   99篇
  2002年   72篇
  2001年   115篇
  2000年   65篇
  1999年   68篇
  1998年   87篇
  1997年   58篇
  1996年   93篇
  1995年   112篇
  1994年   111篇
  1993年   48篇
  1992年   71篇
  1991年   34篇
  1990年   32篇
  1989年   76篇
  1988年   28篇
  1987年   24篇
  1986年   35篇
  1985年   90篇
  1984年   91篇
  1983年   65篇
  1982年   66篇
  1981年   99篇
  1980年   19篇
  1979年   25篇
  1978年   29篇
  1977年   27篇
  1975年   29篇
  1974年   23篇
  1973年   21篇
  1972年   20篇
  1969年   20篇
  1968年   18篇
排序方式: 共有3292条查询结果,搜索用时 15 毫秒
281.
The low gravity of a small asteroid would present a challenge for an astronaut attempting to work on its surface. Extravehicular activities (EVAs) of the sophistication of the Apollo Moon missions are not likely to be possible if astronauts attempt to walk freely on the asteroid, hover above its surface, or anchor locally into the regolith. Manipulating large rocks, drilling, and excavating at multiple locations is a high priority science objective, but would be difficult without a hold-down mechanism. If the asteroid has even a small rotation rate, maneuvering precisely over its surface could be cumbersome. A plausible means of conducting complex EVAs is to tie ropes entirely around the asteroid, under which the astronaut is pushed downward onto the asteroid surface by the tension in the rope. The downward force provides an artificial gravity that permits the astronaut to drill, excavate, hammer, and carefully document materials on the surface without the worry of being thrown from the asteroid. An astronaut could also use the ropes as handholds or guides to maneuver freely over the surface.  相似文献   
282.
Abrashkin  V. I.  Volkov  M. V.  Egorov  A. V.  Zaitsev  A. S.  Kazakova  A. E.  Sazonov  V. V. 《Cosmic Research》2003,41(6):593-612
We compare the results of two methods used to determine the angular velocity of the Foton-12 satellite and the low-frequency component of microaccelerations onboard it. The first method is based on reconstruction of the satellite's rotational motion using the data of onboard measurements of the strength of the Earth's magnetic field. The motion (time dependence of the orientation parameters and angular velocity) was found from the condition of best approximation of the measurement data by the functions calculated along the solutions to equations of attitude motion of the satellite. The solutions found were used to calculate the quasistatic component of microaccelerations at certain points of the satellite, in particular, at the point of location of an accelerometer of the QSAM system. Filtration of the low-frequency component of the angular velocity and microacceleration from the data of measurements by a sensor of angular velocity and by the accelerometer of this system served as a second method. The filtration was made using the discrete Fourier series. A spectral analysis of the functions representing the results of determining the angular velocity and microacceleration by both methods is performed. Comparing the frequencies and amplitudes of the harmonic component of these functions allowed us to estimate the accuracy of measurements made by the QSAM system in the low-frequency range.  相似文献   
283.
Kicza M  Erickson K  Trinh E 《Acta Astronautica》2003,53(4-10):659-663
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output.  相似文献   
284.
The availability of water-ice at the surface in the Mars polar cap and within the top meter of the high-latitude regolith raises the question of whether liquid water can exist there under some circumstances and possibly support the existence of biota. We examine the minimum temperatures at which liquid water can exist at ice grain-dust grain and ice grain-ice grain contacts, the minimum subfreezing temperatures at which terrestrial organisms can grow or multiply, and the maximum temperatures that can occur in martian high-latitude and polar regions, to see if there is overlap. Liquid water can exist at grain contacts above about -20 degrees C. Measurements of growth in organisms isolated from Siberian permafrost indicate growth at -10 degrees C and metabolism at -20 degrees C. Mars polar and high-latitude temperatures rise above -20 degrees C at obliquities greater than ~40 degrees, and under some conditions rise above 0 degrees C. Thus, the environment in the Mars polar regions has overlapped habitable conditions within relatively recent epochs, and Mars appears to be on the edge of being habitable at present. The easy accessibility of the polar surface layer relative to the deep subsurface make these viable locations to search for evidence of life.  相似文献   
285.
Effects of variable thermal properties (specific heat and thermal conductivity) of the solid phase on the combustion of composite solid propellants are studied analytically. Both steady and unsteady burning are considered. It is shown that the effects of variable thermal properties are small and can be accounted for by choosing proper average values of specific heat and thermal conductivity.  相似文献   
286.
287.
The first European mission to Venus (Venus Express) is described. It is based on a repeated use of the Mars Express design with minor modifications dictated in the main by more severe thermal environment at Venus. The main scientific task of the mission is global exploration of the Venusian atmosphere, circumplanetary plasma, and the planet surface from an orbiting spacecraft. The Venus Express payload includes seven instruments, five of which are inherited from the missions Mars Express and Rosetta. Two instruments were specially designed for Venus Express. The advantages of Venus Express in comparison with previous missions are in using advanced instrumentation and methods of remote sounding, as well as a spacecraft with a broad spectrum of capabilities of orbital observations.  相似文献   
288.
An estimate of the feasibility of the ultrahigh-energy cosmic ray and neutrino detection using a lunar satellite-borne radio receiver is presented. The data obtained in the proposed experiment will make resolving the current contradictions in the ultrahigh-energy cosmic ray spectra measured with the major ground-based instruments possible. Moreover, they will enable us to considerably extend the accessible energy range and to check predictions of various models of the origin of the highest-energy particles in the Universe. At the same time the lunar radio detector provides a means of searching for ultrahigh-energy neutrinos with a high sensitivity combined with a very large target effective mass.  相似文献   
289.
On going flights of Foton satellites allow to carry out research in the following domains: effect of space flight and outer space factors such as microgravity, artificial gravity and space radiation on physical processes and biological organisms. Experts from many Russian and foreign scientific institutions participated in the research. Over a period of time from 1973 to 1997 there were launched 11 BION satellites designed by the Central Specialized Design Bureau for carrying out fundamental and applied research in the field of space biology, medicine, radio physics and radiobiology with participation of specialists from the foreign countries.The goal of the present investigation was in developing a numerical simulator aimed at determining gas concentration and temperature fields established inside the scientific module of the spacecraft “Bion-M” and to perform optimization studies, which could meet strong requirements for air quality and temperature range allowable for operation of different biological experiments.  相似文献   
290.
The RF SRC—Institute of Biomedical Problems, Russian Academy of Sciences, developed Biorisk hardware to study the effects of long-term exposure of dormant forms of various organisms to outer space and used it to complete a series of experiments on the Russian Module (RM) of the International Space Station (ISS).The experiments were performed using prokaryotes (Bacillus bacteria) and eukaryotes (Penicillium, Aspergillus, and Cladosporium fungi), as well as spores, dormant forms of higher plants, insects, lower crustaceans, and vertebrates. The biological samples were housed in two containers that were exposed to outer space for 13 or 18 months. The results of the 18-month experiment showed that, in spite of harsher temperature than in the first study, most specimens remained viable.These experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号