首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4863篇
  免费   28篇
  国内免费   20篇
航空   2151篇
航天技术   1693篇
综合类   11篇
航天   1056篇
  2021年   43篇
  2019年   27篇
  2018年   113篇
  2017年   95篇
  2016年   82篇
  2015年   43篇
  2014年   117篇
  2013年   137篇
  2012年   129篇
  2011年   193篇
  2010年   144篇
  2009年   229篇
  2008年   256篇
  2007年   155篇
  2006年   112篇
  2005年   142篇
  2004年   140篇
  2003年   166篇
  2002年   112篇
  2001年   180篇
  2000年   94篇
  1999年   96篇
  1998年   117篇
  1997年   84篇
  1996年   128篇
  1995年   145篇
  1994年   135篇
  1993年   64篇
  1992年   100篇
  1991年   43篇
  1990年   43篇
  1989年   101篇
  1988年   39篇
  1987年   39篇
  1986年   51篇
  1985年   139篇
  1984年   118篇
  1983年   82篇
  1982年   96篇
  1981年   148篇
  1980年   32篇
  1979年   30篇
  1978年   33篇
  1977年   36篇
  1976年   23篇
  1975年   39篇
  1974年   35篇
  1973年   28篇
  1970年   22篇
  1969年   22篇
排序方式: 共有4911条查询结果,搜索用时 11 毫秒
91.
The commenters point out that the idea using a two-dimensional digital correlation technique to perform synthetic-aperture-radar (SAR) processing, presented as new in the above-titled paper (see ibid., vol.24, p.218-23, May 1988), was described by them as early as 1978 and has since been described by other authors. They discuss some of these earlier studies. The author replies that he was unaware of the earlier work, and that he did not intend to convey the impression that the nonseparable transform domain processor that he presented was the first  相似文献   
92.
Evidence on the issues of whether the W Serpentis stars are a coherent class, and how they may interface with the Algol systems, is reviewed, with emphasis on the idea that they are semi-detached systems in the latter part of the rapid phase of mass transfer, with optically and geometrically thick disks of transferred gas around the (now) more massive star. We are interested in what will be seen when the gas clears away, and mainly examine the idea that it will be an Algol-type system. More particularly, consideration is given to centrifugally limited accretion as a mechanism to build up a substantial disk, and the presumed evolutionary sequence is from a W Ser to a rapidly rotating Algol to a normal Algol system. Systems such as V367 Cyg and RW Tau fit into this scheme only with difficulty. Because it is extremely difficult to measure the rotation of some W Ser (mass) primaries, it is natural to look at the rotation statistics of Algols to test this idea. The badly behaved light curves and spectroscopy of some Algols (eg. U Cep, RZ Sct) may be attributable to the double contact condition, and the ramifications of this possibility are discussed. If so, the rotation statistics of Algols should show two spikes, corresponding to the two special conditions into which a system should be driven by tidal braking and centrifugally limited spinup. Present rotation statistics do show these spikes. Algols should flip between these states fairly quickly, depending on the mass transfer rate. Thus, to the extent that the meager statistics can be accepted as meaningful, the new (fourth) morphological type of close binary (double contact) has attained demonstrable reality. The rotation statistics are presented in terms of a particular rotation parameter, R, which is zero for synchronism and unity for the centrifugal limit. Future work should develop rotation statistics to see if the rotational lobe-filling (R = 1) spike persists. It should also look into whether W Ser primaries are on the hydrogen burning main sequence, or in general what they are. We also need more light curves of W Ser type systems, high resolution line profiles for the (mass) primaries (with particular attention to the W Ser-Algol transition cases), and spectroscopy of low inclination W Serpentis systems, such as KX And.  相似文献   
93.
A brief review of various theoretical approaches to model accretion disks is presented. Emphasis is given to models that determine self-consistently the structure of a disk together with the radiation field. It is argued that a proper treatment of the vertical structure is essential for calculating theoretical spectra to be compared with observations. In particular, it is shown that hot layers above an accretion disk (sometimes called disk chromospheres or coronae), whose presence is indicated by recent UV observations of strong emission lines of highly ionized species, may be explained using simple energy balance arguments.1987–88 JILA Visiting Fellow.This work was in part supported by a NASA grant ADP U-003-88 (Plavec and Hubeny). I also wish to thank the organizers of the IAU Colloquium 107 for the travel grant which enabled me to attend the meeting.  相似文献   
94.
A refined stochastic model for the errors of the Loran-C radio navigation aid is described, and it is shown how this model can be used to improve the performance of integrated navigation systems. In addition to the usual propagation errors, Loran-C time of arrival measurements are occasionally plagued with sudden intermittent errors of a particular magnitude and caused by receiver cycle selection errors. These result in sudden large jumps in the calculated position solution. The Loran-C error has been modeled as the sum of a diffusion process, representing the normal propagating errors, and a pure jump process of Poisson type, representing the cycle selection errors. A simple integrated navigation system is then described, based on the Loran-C model and the standard dead reckoning (heading and speed) system model. Assuming that the observed process is governed by a linear stochastic difference equation, a recursive linear unbiased minimum variance filter is developed, from which the Loran-C and dead reckoning errors, and hence position and velocity, can be estimated  相似文献   
95.
The Galileo spacecraft was launched by the Space Shuttle Atlantis on October 18, 1989. A two-stage Inertial Upper Stage propelled Galileo out of Earth parking orbit to begin its 6-year interplanetary transfer to Jupiter. Galileo has already received two gravity assists: from Venus on February 10, 1990 and from Earth on December 8, 1990. After a second gravity-assist flyby of Earth on December 8, 1992, Galileo will have achieved the energy necessary to reach Jupiter. Galileo's interplanetary trajectory includes a close flyby of asteroid 951-Gaspra on October 29, 1991, and, depending on propellant availability and other factors, there may be a second asteroid flyby of 243-Ida on August 28, 1993. Upon arrival at Jupiter on December 7, 1995, the Galileo Orbiter will relay data back to Earth from an atmospheric Probe which is released five months earlier. For about 75 min, data is transmitted to the Orbiter from the Probe as it descends on a parachute to a pressure depth of 20–30 bars in the Jovian atmosphere. Shortly after the end of Probe relay, the Orbiter ignites its rocket motor to insert into orbit about Jupiter. The orbital phase of the mission, referred to as the satellite tour, lasts nearly two years, during which time Galileo will complete 10 orbits about Jupiter. On each of these orbits, there will be a close encounter with one of the three outermost Galilean satellites (Europa, Ganymede, and Callisto). The gravity assist from each satellite is designed to target the spacecraft to the next encounter with minimal expenditure of propellant. The nominal mission is scheduled to end in October 1997 when the Orbiter enters Jupiter's magnetotail.List of Acronyms ASI Atmospheric Structure Instrument - EPI Energetic Particles Instrument - HGA High Gain Antenna - IUS Inertial Upper Stage - JOI Jupiter Orbit Insertion - JPL Jet Propulsion Laboratory - LRD Lightning and Radio Emissions Detector - NASA National Aeronautics and Space Administration - NEP Nephelometer - NIMS Near-Infrared Mapping Spectrometer - ODM Orbit Deflection Maneuver - OTM Orbit Trim Maneuver - PJR Perijove Raise Maneuver - PM Propellant Margin - PDT Pacific Daylight Time - PST Pacific Standard Time - RPM Retropropulsion Module - RRA Radio Relay Antenna - SSI Solid State Imaging - TCM Trajectory Correction Maneuver - UTC Universal Time Coordinated - UVS Ultraviolet Spectrometer - VEEGA Venus-Earth-Earth Gravity Assist  相似文献   
96.
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992.  相似文献   
97.
Cross-correlation properties of algebraically constructed Costasarrays   总被引:1,自引:0,他引:1  
The problem of determining the cross-correlation properties of signals based on algebraically constructed Costas arrays is addressed by examining the discrete cross-correlation of the algebraically constructed Costas arrays for a given construction and dimension. Finding two arrays that minimally correlate implies that the signals based on these arrays also minimally correlate. The properties of finite fields are reviewed, and the major algebraic constructions for Costas arrays are presented, i.e. the Welch construction and the Golomb construction. The discrete cross-correlation properties of the Costas arrays are derived for arrays of the same dimension derived from the same construction. The use of Costas arrays in the signal design problem is discussed, and examples are given to show the cross-correlation of the signals based on the algebraically constructed arrays  相似文献   
98.
Polish radar research and development since 1953 is reviewed, covering the development and production of surveillance radars, height finders, tracking radars, air traffic control (ATC) radars and systems, and marine and Doppler radars. Some current work, including an L-band ATC radar for enroute control, a weather channel for primary surveillance radar, signal detection in non-Gaussian clutter, adaptive MTI filters and postdetection filtering, and a basic approach to radar polarimetry, is examined.<>  相似文献   
99.
An algorithm is described for initial synchronization in a communication system with a digital adaptive array. This algorithm can also be used for message extraction. A set of consecutive complex video samples of the array output is processed to obtain optimum adaptive array weights, based on a least mean square (LMS) error criterion. This computation is performed for each of the possible alternative signals which may be present during an observation interval. The correct synchronization time or message symbol is selected as the one which yields the minimum LMS error. Assuming orthogonality of the alternative codes, a probability distribution for the output of this processor has been derived.  相似文献   
100.
In practical situations the false alarm probability in double threshold radar detection, sometimes known as binary integration with sliding window detection, is dependent on the nonstationarity and azimuthal correlation of the clutter which is present. Control of the false alarm probability can be achieved, to a certain extent, by the adjustment of the second threshold in the detection process. In this study two adaptive control techniques which are based on the statistical characteristics of the data are compared. Comparing the results for a technique based on first-order statistics with one based on second-order statistics, it is shown that the second-order, or correlation sensitive, technique can give a reduction of 30 to 45 percent in the false alarm probability with no corresponding loss in the detection probability. An interesting aspect of the results is the fact that the effects of the size of the sample area and the bias in the correlation estimator are clearly evident.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号