首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7194篇
  免费   13篇
  国内免费   32篇
航空   3426篇
航天技术   2646篇
综合类   28篇
航天   1139篇
  2021年   56篇
  2019年   45篇
  2018年   132篇
  2017年   89篇
  2016年   73篇
  2014年   140篇
  2013年   188篇
  2012年   175篇
  2011年   259篇
  2010年   175篇
  2009年   293篇
  2008年   374篇
  2007年   184篇
  2006年   164篇
  2005年   204篇
  2004年   217篇
  2003年   240篇
  2002年   150篇
  2001年   218篇
  2000年   154篇
  1999年   157篇
  1998年   208篇
  1997年   151篇
  1996年   186篇
  1995年   243篇
  1994年   227篇
  1993年   128篇
  1992年   196篇
  1991年   74篇
  1990年   77篇
  1989年   177篇
  1988年   56篇
  1987年   64篇
  1986年   98篇
  1985年   225篇
  1984年   167篇
  1983年   148篇
  1982年   172篇
  1981年   200篇
  1980年   73篇
  1979年   54篇
  1978年   58篇
  1977年   51篇
  1975年   46篇
  1974年   57篇
  1973年   46篇
  1972年   41篇
  1971年   46篇
  1970年   40篇
  1969年   46篇
排序方式: 共有7239条查询结果,搜索用时 156 毫秒
491.
We discuss the solar wind parameters measured in the distant heliosphere from the Voyager 2 spacecraft. Periodic variations in the speed of the wind observed at roughly the solar rotation period may correspond to interaction regions between slower and faster streams of wind. Since the interplanetary magnetic field is enhanced in such regions, they are important for the study of modulation of cosmic rays. Unfortunately, direct observation of the enhanced magnetic field from Voyager 2 has been made difficult by spacecraft-associated noise since 1989.  相似文献   
492.
There is evidence for temperature fluctuations in Planetary Nebulae and in some Galactic H II regions. If such fluctuations occur in the low metallicity, extragalactic H II regions used to probe the primordial helium abundance, the derived 4He mass fraction, YP, could be systematically different from the true primordial value. Although this effect could be large, there are no data which allow us to estimate the size of the temperature fluctuations for the extragalactic H II regions. Therefore, we have explored this effect via Monte Carlo simulations of the data in which the abundances derived from a fiducial data set are modified by T chosen from a distribution with 0 T Tmax where Tmax is varied from 500 K to 4000 K.  相似文献   
493.
Klumpar  D.M.  Möbius  E.  Kistler  L.M.  Popecki  M.  Hertzberg  E.  Crocker  K.  Granoff  M.  Tang  Li  Carlson  C.W.  McFadden  J.  Klecker  B.  Eberl  F.  Künneth  E.  Kästle  H.  Ertl  M.  Peterson  W.K.  Shelly  E.G.  Hovestadt  D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2 + molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor.  相似文献   
494.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
495.
Previous work on the latitudinal gradient and on the amplitude of the recurrent cosmic ray decreases, has shown that their magnitude does not decrease monotonically with the particle rigidity, but it presents a broad maximun around 1–2 GV. We have extended this analysis to study the behaviour of cosmic-ray particles during the modulation steps in the rising part of the solar activity of the present Solar cycle. We found that the ‘depth’ of the modulation step decreases monotonically with increasing rigidity and that the least energetic particles are the last to reach their minimum intensity value. We also considered in this analysis electrons of equal rigidity to study the influence of the charge sign on the particle behaviour during the modulation steps. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
496.
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres.  相似文献   
497.
SAR ATR performance using a conditionally Gaussian model   总被引:1,自引:0,他引:1  
A family of conditionally Gaussian signal models for synthetic aperture radar (SAR) imagery is presented, extending a related class of models developed for high resolution radar range profiles. This signal model is robust with respect to the variations of the complex-valued radar signals due to the coherent combination of returns from scatterers as those scatterers move through relative distances on the order of a wavelength of the transmitted signal (target speckle). The target type and the relative orientations of the sensor, target, and ground plane parameterize the conditionally Gaussian model. Based upon this model, algorithms to jointly estimate both the target type and pose are developed. Performance results for both target pose estimation and target recognition are presented for publicly released data from the MSTAR program  相似文献   
498.
499.
In recent UVCS/SOHO White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9 to 2.45 solar radii. The motivation for the observation is the 2.5D MHD model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. In February 1998 we performed new observations using the UVCS/WLC in the coronal hole and obtained additional data. The new data corroborate our earlier findings with higher statistical significance. The new longer observations show that the power spectrum peaks in the 10–12 minute range. These timescales agree with EIT observations of brightness fluctuations in polar plumes. We performed preliminary LASCO/C2 observations in an effort to further establish the coronal origin of the fluctuations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
500.
A transmission resonant cavity technique, which is suitable for making measurements of electron line densities and collision frequencies in the ionized wakes of hypervelocity projectiles, is described. With this method electron density measurements can be made over six orders of magnitude. Resonant cavity design requirements and limitations of the method are discussed. Typical data from measurements behind projectiles traveling at speeds up to 6.5 km/s are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号