首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7194篇
  免费   13篇
  国内免费   32篇
航空   3426篇
航天技术   2646篇
综合类   28篇
航天   1139篇
  2021年   56篇
  2019年   45篇
  2018年   132篇
  2017年   89篇
  2016年   73篇
  2014年   140篇
  2013年   188篇
  2012年   175篇
  2011年   259篇
  2010年   175篇
  2009年   293篇
  2008年   374篇
  2007年   184篇
  2006年   164篇
  2005年   204篇
  2004年   217篇
  2003年   240篇
  2002年   150篇
  2001年   218篇
  2000年   154篇
  1999年   157篇
  1998年   208篇
  1997年   151篇
  1996年   186篇
  1995年   243篇
  1994年   227篇
  1993年   128篇
  1992年   196篇
  1991年   74篇
  1990年   77篇
  1989年   177篇
  1988年   56篇
  1987年   64篇
  1986年   98篇
  1985年   225篇
  1984年   167篇
  1983年   148篇
  1982年   172篇
  1981年   200篇
  1980年   73篇
  1979年   54篇
  1978年   58篇
  1977年   51篇
  1975年   46篇
  1974年   57篇
  1973年   46篇
  1972年   41篇
  1971年   46篇
  1970年   40篇
  1969年   46篇
排序方式: 共有7239条查询结果,搜索用时 703 毫秒
421.

A Time-Delay Integration (TDI) image acquisition and processing system has been developed to capture ICON’s Far Ultraviolet (FUV) Spectrographic Imager data. The TDI system is designed to provide variable-range motion-compensated imaging of Earth’s nightside ionospheric limb and sub-limb scenes viewed from Low Earth Orbit in the 135.6 nm emission of oxygen with an integration time of 12 seconds. As a pre-requisite of the motion compensation the TDI system is also designed to provide corrections for optical distortions generated by the FUV Imager’s optical assembly. On the dayside the TDI system is used to process 135.6 nm and 157.0 nm wavelength altitude profiles simultaneously. We present the TDI system’s design methodology and implementation as an FPGA module with an emphasis on minimization of on-board data throughput and telemetry. We also present the methods and results of testing the TDI system in simulation and with Engineering Ground Support Equipment (EGSE) to validate its performance.

  相似文献   
422.
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers.  相似文献   
423.
Almost all theoretical and numerical models for the modulation of cosmic ray in the heliosphere are based on Parker's transport equation which contains all the important basic physical processes. The relative importance of the various mechanisms is however not established and may vary significantly over 22 years. The simultaneous measurements of solar wind parameters, heliospheric magnetic field properties and cosmic rays over a wide range of energies and positions in the heliosphere have brought the realization that modulation is much more complicated than what the original drift models predicted. In the process the sophistication of models based on solving Parker's equation has increased by orders of magnitude. A short review of the global modulation of cosmic rays is given from a theoretical and modelling point of view.  相似文献   
424.
Introduction     
Space Science Reviews -  相似文献   
425.
McComas  D.J.  Bame  S.J.  Barker  P.  Feldman  W.C.  Phillips  J.L.  Riley  P.  Griffee  J.W. 《Space Science Reviews》1998,86(1-4):563-612
The Solar Wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced Composition Explorer (ACE). These observations provide the context for elemental and isotopic composition measurements made on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation. They also provide an ideal data set for both heliospheric and magnetospheric multi-spacecraft studies where they can be used in conjunction with other, simultaneous observations from spacecraft such as Ulysses. The SWEPAM observations are made simultaneously with independent electron and ion instruments. In order to save costs for the ACE project, we recycled the flight spares from the joint NASA/ESA Ulysses mission. Both instruments have undergone selective refurbishment as well as modernization and modifications required to meet the ACE mission and spacecraft accommodation requirements. Both incorporate electrostatic analyzers whose fan-shaped fields of view sweep out all pertinent look directions as the spacecraft spins. Enhancements in the SWEPAM instruments from their original forms as Ulysses spare instruments include (1) a factor of 16 increase in the accumulation interval (and hence sensitivity) for high energy, halo electrons; (2) halving of the effective ion-detecting CEM spacing from ∼5° on Ulysses to ∼2.5° for ACE; and (3) the inclusion of a 20° conical swath of enhanced sensitivity coverage in order to measure suprathermal ions outside of the solar wind beam. New control electronics and programming provide for 64-s resolution of the full electron and ion distribution functions and cull out a subset of these observations for continuous real-time telemetry for space weather purposes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
426.
Spite  F.  Spite  M.  Hill  V. 《Space Science Reviews》1998,84(1-2):155-160
The relation between the lithium abundance observed in Population II stars and the primordial abundance, is still an open question (see Cayrel and Duncan, this meeting). A few recent results are discussed. HIPPARCOS data show that the standard model of stellar evolution can explain the 6Li detection in HD 84937, suggesting a negligible depletion of 7Li. A slope in the Li/Teff relation for Pop II dwarfs and a spread of their Li abundance have been advocated, and both used as arguments in favor of Li depletion. The slope is not confirmed when two other independent temperature scales are used. The Li scatter around the plateau is hardly larger than the scatter predicted from determination errors. Hints from a scatter of Li in subgiants of the globular cluster M92 are not completely conclusive. The determination of more accurate Li abundances in the Pop II stars is an urgent but difficult task, requiring better model atmosphere (better convection treatment) and the help of observational data about Pop II stars (such as long base interferometry).  相似文献   
427.
The ChemCam instrument on the Mars Science Laboratory rover Curiosity will use laser-induced breakdown spectroscopy (LIBS) to analyze major and minor element chemistry from sub-millimeter spot sizes, at ranges of ~1.5–7?m. To interpret the emission spectra obtained, ten calibration standards will be carried on the rover deck. Graphite, Ti?metal, and four glasses of igneous composition provide primary, homogeneous calibration targets for the laser. Four granular ceramic targets have been added to provide compositions closer to soils and sedimentary materials like those expected at the Gale Crater field site on Mars. Components used in making these ceramics include basalt, evaporite, and phyllosilicate materials that approximate the chemical compositions of detrital and authigenic constituents of clastic and evaporite sediments, including the elevated sulfate contents present in many Mars sediments and soils. Powdered components were sintered at low temperature (800?°C) with a small amount (9?wt.%) of lithium tetraborate flux to produce ceramics that retain volatile sulfur yet are durable enough for the mission. The ceramic targets are more heterogeneous than the pure element and homogenous glass standards but they provide standards with compositions more similar to the sedimentary rocks that will be Curiosity’s prime targets at Gale Crater.  相似文献   
428.
This chapter mainly deals with magnetic reconnection and particle acceleration in relativistic astrophysical plasmas, where the temperature of the current sheet exceeds the rest mass energy and the Alfvén velocity is close to the speed of light. Magnetic reconnection now receives a great deal of interest for its role in many astrophysical systems such as pulsars, magnetars, galaxy clusters, and active galactic nucleus jets. We review recent advances that emphasize the roles of reconnection in high-energy astrophysical phenomena.  相似文献   
429.
Mahaffy  P.R.  Donahue  T.M.  Atreya  S.K.  Owen  T.C.  Niemann  H.B. 《Space Science Reviews》1998,84(1-2):251-263
The Galileo Probe Mass Spectrometer measurements in the atmosphere of Jupiter give D/H = (2.6 ± 0.7) × 10-5 3He/4He = (1.66 ± 0.05) × 10-4These ratios supercede earlier results by Niemann et al. (1996) and are based on a reevaluation of the instrument response at high count rates and a more detailed study of the contributions of different species to the mass peak at 3 amu. The D/H ratio is consistent with Voyager and ground based data and recent spectroscopic and solar wind (SW) values obtained from the Infrared Spectroscopic Observatory (ISO) and Ulysses. The 3He/4He ratio is higher than that found in meteoritic gases (1.5 ± 0.3) × 10-4. The Galileo result for D/H when compared with that for hydrogen in the local interstellar medium (1.6 ± 0.12) × 10-5 implies a small decrease in D/H in this part of the universe during the past 4.55 billion years. Thus, it tends to support small values of primordial D/H - in the range of several times 10-5 rather than several times 10-4. These results are also quite consistent with no change in (D+3He)/H during the past 4.55 billion years in this part of our galaxy.  相似文献   
430.
Marchi  S.  Asphaug  E.  Bell  J. F.  Bottke  W. F.  Jaumann  R.  Park  R. S.  Polanskey  C. A.  Prettyman  T. H.  Williams  D. A.  Binzel  R.  Oran  R.  Weiss  B.  Russell  C. T. 《Space Science Reviews》2022,218(4):1-28
Space Science Reviews - Analysis of Homestake, Gallex and GNO measurements reveals evidence of variability of presumed solar-neutrino-flux measurements. Analysis of Super-Kamiokande neutrino...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号