首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   1篇
  国内免费   5篇
航空   152篇
航天技术   67篇
综合类   1篇
航天   139篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   11篇
  2017年   6篇
  2015年   2篇
  2014年   8篇
  2013年   9篇
  2012年   24篇
  2011年   36篇
  2010年   17篇
  2009年   23篇
  2008年   18篇
  2007年   21篇
  2006年   16篇
  2005年   25篇
  2004年   3篇
  2003年   14篇
  2002年   13篇
  2001年   5篇
  2000年   5篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   8篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   6篇
  1966年   2篇
  1963年   1篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
281.
Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.  相似文献   
282.
We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.  相似文献   
283.
A NanoSIMS ion microprobe was used to map the submicron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae in a thin section of the approximately 0.85 billion year old Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and the biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments revealed distinct wall- and sheath-like structures enriched in C, N, and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibited filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N, and S. By analogy to NanoSIMS data from the well-preserved microfossils, these structures were interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Given that the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings indicate that a re-evaluation of ancient specimens via in situ structural, chemical, and isotopic study is warranted. Our analyses have led us to propose new criteria for assessing the biogenicity of problematic kerogenous materials, and, thus, these criteria can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.  相似文献   
284.
Analysis of rotorcraft dynamics requires solution of the rotor induced flow field.Often,the appropriate model to be used for induced flow is nonlinear potential flow theory(which is the basis of vortex-lattice methods).These nonlinear potential flow equations sometimes must be solved in real time––such as for real-time flight simulation,when observers are needed for controllers,or in preliminary design computations.In this paper,the major effects of nonlinearities on induced flow are studied for lifting rotors in low-speed flight and hover.The approach is to use a nonlinear statespace model of the induced flow based on a Galerkin treatment of the potential flow equations.  相似文献   
285.
A study was carried out on the effects of processing and composition on the structure and properties of P/M EP741NP type alloys. The objectives of this study were to understand the role of Hf in a P/M superalloy containing high niobium used in aircraft engines and to determine the effects of extrusion and forging the powders as contrasted to HIPing (hot isostatic pressing) only. Two alloys of the P/M EP741NP composition were atomized: one alloy contained 0.26%Hf and the other was Hf free. After the as-atomized powders from both alloys were characterized, the powders were extruded into billets, forged and heat treated. After each process, the microstructures were characterized by SEM and the phases were extracted and identified by X-ray diffraction. The presence of Hf in the residues was probed by EDS (energy dispersive spectroscopy). The alloys were given the published Russian heat treatment as well as a more conventional heat treatment more typical of western powder alloys. Tensile, creep and stress rupture mechanical property tests were run. Results of the structural behavior of the alloys after each processing step will be presented and discussed. The role of the Hf on the mechanical proper- ties will be discussed.  相似文献   
286.
The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells’ theory (Sorrells, Geophys. J. Int. 26:71–82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14–16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically \(\sim 2 \mbox{--} 40~\mbox{nm}/\mbox{s}^{2}\) in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be \(\sim 0.1\mbox{--}6~\mbox{nm}/\mbox{s}^{2}\) in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects.We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer.In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of \(\sim 5\) in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission.  相似文献   
287.
288.
The determination of the detailed performance of an MHD-augmented high-enthalphy shock tunnel requires the simultaneous measurment of a large number of aerodynamic, electrical, and electromagnetic parameters in a test time interval of the order of several hundred microseconds. In the feasibility study currently being conducted in our laboratory of such a device, an extensive measuring system was set up and evaluated, and is being used to acquire facility performance data. This paper describes this measuring system, discusses the modifications and adaptations applied to make the various components of the system operable and compatible, and gives illustrative examples of the performance of the system.  相似文献   
289.
290.
We present here a brief summary of the rich heritage of observational and theoretical research leading to the development of our current understanding of the initiation, structure, and evolution of Coronal Mass Ejections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号