首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4792篇
  免费   11篇
  国内免费   12篇
航空   2234篇
航天技术   1663篇
综合类   17篇
航天   901篇
  2021年   50篇
  2019年   30篇
  2018年   112篇
  2017年   77篇
  2016年   77篇
  2015年   41篇
  2014年   137篇
  2013年   147篇
  2012年   164篇
  2011年   223篇
  2010年   140篇
  2009年   238篇
  2008年   308篇
  2007年   144篇
  2006年   122篇
  2005年   159篇
  2004年   122篇
  2003年   164篇
  2002年   102篇
  2001年   157篇
  2000年   80篇
  1999年   100篇
  1998年   127篇
  1997年   94篇
  1996年   93篇
  1995年   125篇
  1994年   125篇
  1993年   68篇
  1992年   98篇
  1991年   55篇
  1990年   38篇
  1989年   91篇
  1988年   43篇
  1987年   44篇
  1986年   39篇
  1985年   99篇
  1984年   91篇
  1983年   82篇
  1982年   86篇
  1981年   120篇
  1980年   43篇
  1979年   36篇
  1978年   34篇
  1977年   26篇
  1976年   29篇
  1975年   23篇
  1974年   26篇
  1973年   24篇
  1972年   24篇
  1970年   22篇
排序方式: 共有4815条查询结果,搜索用时 46 毫秒
301.
Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.  相似文献   
302.
An excess over the extrapolation to the extreme ultraviolet and soft X-ray ranges of the thermal emission from the hot intracluster medium has been detected in a number of clusters of galaxies. We briefly present each of the satellites (EUVE, ROSAT PSPC and BeppoSAX, and presently XMM-Newton, Chandra and Suzaku) and their corresponding instrumental issues, which are responsible for the fact that this soft excess remains controversial in a number of cases. We then review the evidence for this soft X-ray excess and discuss the possible mechanisms (thermal and non-thermal) which could be responsible for this emission.  相似文献   
303.
Itapetinga measurements at 48 GHz with the multibeam technique are used to determine the relative position of solar burst centroid of emission with high spatial accuracy and time resolution. For the Great Bursts of October 19,22, 1989, with a large production of relativistic particles, and October 23, it is suggested that, at 48 GHz, the bursts might have originated in more then one source in space and time. Additionally the October 19 and 22 Ground Level Events exhibited very unusual intensity-time profiles including double component structures for the onset phase. The Bern observatory spectral radio emission data show a strong spectral flattening typical for large source inhomogeneties. The interpretation for this is that large solar flares are a superposition of a few strong bursts (separated both in space and time) in the same flaring region.  相似文献   
304.
Initial results of a combined study of electron events using the 3DP experiment on the WIND spacecraftand the Nançay Radioheliograph (NRH) are presented. A total of 57 electron events whose solar release time could be inferred from WIND/3DP observations occurred during NRH observing times. In 40 of them a distinct signature was detected in maps at decimetric and metric wavelengths (dm-m-λ) taken by the NRH. These events are equally distributed among two categories: (1) Electron release together with dm-m-λ bursts of a few minutes duration: these events are also accompanied by decametric-hectometric type III bursts seen by WAVES/WIND. They correspond to the well-known impulsive electron events. (2) Electron release during long duration (several tens of minutes) dm-m-λ emission: the electrons are most often released more than ten minutes after the start of the radio event. In the majority of cases the dm-m-λ radio source changes position, size, and/or intensity near the time of electron release.  相似文献   
305.
306.
Our work focuses on a comprehensive orbital phase-dependent spectroscopy of the four High Mass X-ray Binary Pulsars (HMXBPs) 4U 1538-52, GX 301-2, OAO 1657-415 and Vela X-1. We hereby report the measurements of the variation of the absorption column density and iron-line flux along with other spectral parameters over the binary orbit for the above-mentioned HMXBPs in elliptical orbits, as observed with the Rossi X-ray Timing Explorer (RXTE) and the BeppoSAX satellites. A spherically symmetric wind profile was used as a model to compare the observed column density variations. Out of the four pulsars, only in 4U 1538-52, we find the model having a reasonable corroboration with the observations, whereas in the remaining three the stellar wind seems to be clumpy and a smooth symmetric stellar wind model appears to be quite inadequate in explaining the data. Moreover, in GX 301-2, neither the presence of a disk nor a gas stream from the companion was validated. Furthermore, the spectral results obtained in the case of OAO 1657-415 and Vela X-1 were more or less similar to that of GX 301-2.  相似文献   
307.
The 22 min long decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare simultaneously by the Brazilian Solar Spectroscope (BSS) and the Ond?ejov radiospectrograph in frequency range 1200–4500 MHz has been analyzed. We have found that the characteristic periods of about 60 s belong to the long-period spectral component of the fast wave trains with a tadpole pattern in their wavelet power spectra. We have detected these trains in the whole frequency range 1200–4500 MHz. The behavior of individual wave trains at lower frequencies is different from that at higher frequencies. These individual wave trains have some common as well as different properties. In this paper, we focus on two examples of wave trains in a loop segment and the main statistical parameters in their wavelet power and global spectra are studied and discussed.  相似文献   
308.
Observations of galactic cosmic rays (GCRs) from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that in addition to a possible global asymmetry in the north–south dimensions (meridional plane) of the heliosphere, it is also possible that different modulation (turbulence) conditions could exist between the two hemispheres of the heliosphere. We focus on illustrating the effects on GCR Carbon of asymmetrical modulation conditions combined with a heliosheath thickness that has a significant dependence on heliolatitude. To reflect different modulation conditions between the two heliospheric hemispheres in our numerical model, the enhancement of both polar and radial perpendicular diffusion off the ecliptic plane is assumed to differ from heliographic pole to pole. The computed radial GCR intensities at polar angles of 55° (approximating the Voyager 1 direction) and 125° (approximating the Voyager 2 direction) are compared at different energies and for both particle drift cycles. This is done in the context of illustrating how different values of the enhancement of both polar and radial perpendicular diffusion between the two hemispheres contribute to causing differences in radial intensities during solar minimum and moderate maximum conditions. We find that in the A > 0 cycle these differences between 55° and 125° change both quantitatively and qualitatively for the assumed asymmetrical modulation condition as reflected by polar diffusion, while in the A < 0 cycle, minute quantitative differences are obtained. However, when both polar and radial perpendicular diffusion have significant latitude dependences, major differences in radial intensities between the two polar angles are obtained in both polarity cycles. Furthermore, significant differences in radial intensity gradients obtained in the heliosheath at lower energies may suggest that the solar wind turbulence at and beyond the solar wind termination shock must have a larger latitudinal dependence.  相似文献   
309.
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionization anomaly (EIA) crest region is investigated by using dual-frequency signals of the Global Positioning System (GPS) acquired from Rajkot (Geog. Lat. 22.29°N, Geog. Long. 70.74°E; Geom. Lat. 14.21°N, Geom. Long. 144.90°E), India. The day-to-day variability of EIA characteristics is examined during low solar activity period (F10.7∼83 sfu). It is found that the daily maximum TEC at EIA crest exhibits a day-to-day and strong semi-annual variability. The seasonal anomaly and equinoctial asymmetry in TEC at EIA is found non-existent and weaker, respectively. We found a moderate and positive correlation of daily magnitude of crest, Ic with daily F10.7 and EUV fluxes with a correlation coefficient of 0.43 and 0.33, respectively indicating an existence of a short-term relation between TEC at EIA and the solar radiation even during low solar activity period. The correlation of daily Ic with Dst index is also moderate (r = −0.35), whereas no correlation is found with the daily Kp index (r = 0.14) respectively. We found that the magnitude of EIA crest is moderately correlated with solar flux in all seasons except winter where it is weakly related (0.27). The magnitude of EIA crest is also found highly related with EEJ strength in spring (r = 0.69) and summer (r = 0.65) than autumn (0.5) and winter (r = 0.47), though EEJ is stronger in autumn than spring.  相似文献   
310.
The propagation of Jovian electrons in interplanetary space was modelled by solving the relevant transport equation numerically through the use of stochastic differential equations. This approach allows us to calculate, for the first time, the propagation time of Jovian electrons from the Jovian magnetosphere to Earth. Using observed quiet-time increases of electron intensities at Earth, we also derive values for this quantity. Comparing the modelled and observed propagation times we can gauge the magnitude of the transport parameters sufficiently to place a limit on the 6 MeV Jovian electron flux reaching Earth. We also investigate how the modelled propagation time, and corresponding Jovian electron flux, varies with the well-known ∼13 month periodicity in the magnetic connectivity of Earth and Jupiter. The results show that the Jovian electron intensity varies by a factor of ∼10 during this cycle of magnetic connectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号