首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5494篇
  免费   8篇
  国内免费   22篇
航空   2870篇
航天技术   1942篇
综合类   23篇
航天   689篇
  2021年   34篇
  2019年   37篇
  2018年   63篇
  2017年   33篇
  2014年   86篇
  2013年   147篇
  2012年   109篇
  2011年   162篇
  2010年   116篇
  2009年   181篇
  2008年   246篇
  2007年   137篇
  2006年   141篇
  2005年   147篇
  2004年   116篇
  2003年   171篇
  2002年   105篇
  2001年   178篇
  2000年   110篇
  1999年   141篇
  1998年   164篇
  1997年   123篇
  1996年   169篇
  1995年   215篇
  1994年   182篇
  1993年   120篇
  1992年   127篇
  1991年   77篇
  1990年   63篇
  1989年   138篇
  1988年   62篇
  1987年   67篇
  1986年   60篇
  1985年   195篇
  1984年   150篇
  1983年   130篇
  1982年   133篇
  1981年   179篇
  1980年   58篇
  1979年   41篇
  1978年   51篇
  1977年   53篇
  1976年   38篇
  1975年   59篇
  1974年   38篇
  1973年   42篇
  1972年   52篇
  1971年   42篇
  1970年   45篇
  1969年   38篇
排序方式: 共有5524条查询结果,搜索用时 218 毫秒
231.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   
232.
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   
233.
We have performed a spectral principal component analysis for a complete sample of 22 low redshift QSOs with spectra from Ly to H, and found three significant principal components, which account for 78% of the spectrum-to-spectrum variance. We present strong arguments that the first principal component represents the Baldwin effect, relating equivalent widths to the luminosity (i.e. accretion rate). The second component represents continuum variations, probably dominated by intrinsic reddening. The third principal component is directly related to broad emission-line width and X-ray spectral index, and therefore probably driven by Eddington accretion ratio, L/LEdd. The third set of relationships tie directly to the optical Principal Component 1 found by Boroson and Green [Boroson, T., Green, R.F., Astrophys. J. Suppl. 80, 109, 1992 (BG92)], and are the primary cause of scatter in the Baldwin relationships.  相似文献   
234.
After initial emphasis on large-scale baseline crop tests, the Kennedy Space Center (KSC) Breadboard project has begun to evaluate long-term operation of the biomass production system with increasing material closure. Our goal is to define the minimum biological processing necessary to make waste streams compatible with plant growth in hydroponic systems, thereby recycling nutrients into plant biomass and recovering water via atmospheric condensate. Initial small and intermediate-scale studies focused on the recycling of nutrients contained in inedible plant biomass. Studies conducted between 1989-1992 indicated that the majority of nutrients could be rapidly solubilized in water, but the direct use of this crop "leachate" was deleterious to plant growth due to the presence of soluble organic compounds. Subsequent studies at both the intermediate scale and in the large-scale Biomass Production Chamber (BPC) have indicated that aerobic microbiological processing of crop residue prior to incorporation into recirculating hydroponic solutions eliminated any phytotoxic effect, even when the majority of the plant nutrient demand was provided from recycled biomass during long term studies (i.e. up to 418 days). Current and future studies are focused on optimizing biological processing of both plant and human waste streams.  相似文献   
235.
236.
Experimental drop tube of the metallurgy department of Grenoble   总被引:1,自引:0,他引:1  
The drop tube which will be available in the “Centre d'Etudes Nucléaires de Grenoble” is described. Its main features are the following: - Dimensions : Drop height : 47.1 m Drop time : 3.1 s Tube inside diameter : 0.2 m - Experimental atmosphere : 1 Ultra-vacuum : 10−6 to 10−7 Pa - Residual gravity level : 10−8 to 10−9 g according to the vacuum level and drop diameter.

This facility is unique insofar as it enables experiments to be performed under ultra-vacuum conditions which, by delaying the formation of surface oxides, should contribute to improving maximum undercooling values.

The techniques used for obtaining small metallic drops (0.5 to 3 mm) are described. The availability of this instrument for the scientific community is also foreseen by the french sponsoring organizations (CEA, CNES, CNRS) ; some practicle informations will be given to potential experimenters.  相似文献   

237.
238.
Ariel VI observations of Cygnus X-2 have revealed a rather flat spectrum between 0.1 and 1.5 keV with variable emission at low energy. Of the two conflicting interpretations of this object in terms of i) a distant high-luminosity (Lx 1038 ergs s−1) binary and ii) a nearby low-luminosity (Lx 1035 ergs s−1) degenerate dwarf system, our measurements support the latter.  相似文献   
239.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   
240.
Noise in wireless systems from solar radio bursts   总被引:1,自引:0,他引:1  
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f  1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号