首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   2篇
  国内免费   4篇
航空   42篇
航天技术   35篇
航天   36篇
  2021年   5篇
  2019年   6篇
  2018年   10篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   10篇
  2013年   18篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有113条查询结果,搜索用时 140 毫秒
91.
We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.  相似文献   
92.
Exact knowledge of the angle of Earth rotation UT1 with respect to coordinated time UTC, dUT1, is essential for all space geodetic techniques. The only technique which is capable of determining dUT1 is Very Long Baseline Interferometry (VLBI). So-called Intensive VLBI sessions are performed on a daily basis in order to provide dUT1. Due to the reduced geometry of Intensive sessions, there is however no possibility to estimate tropospheric gradients from the observations, which limits the accuracy of the resulting dUT1 significantly. This paper deals with introducing the information on azimuthal asymmetry from external sources, thus attempting to improve the dUT1 estimates. We use the discrete horizontal gradients GRAD and the empirical horizontal gradients GPT3 as well as ray-traced delays from the VieVS ray-tracer for this purpose, which can all be downloaded from the VMF server of TU Wien (http://vmf.geo.tuwien.ac.at). The results show that this strategy indeed improves the dUT1 estimates when compared to reference values from multi-station VLBI stations, namely by up to 15%. When converted to length-of-day (LOD), the estimates can be compared to LODs from global analyses of Global Navigation Satellite Systems (GNSS). Here, the improvement amounts to up to 7% compared to neglecting a priori information on azimuthal asymmetry.  相似文献   
93.
This research investigates the performance of bi-level hybrid optimal control algorithms in the solution of minimum delta-velocity geostationary transfer maneuvers with cooperative en-route inspection. The maneuvers, introduced here for the first time, are designed to populate a geostationary constellation of space situational awareness satellites while providing additional characterization of objects in lower-altitude orbit regimes. The maneuvering satellite, called the chaser, performs a transfer from low Earth orbit to geostationary orbit, during which it performs an inspection of one of several orbiting targets in conjunction with a ground site for the duration of the target?s line-of-site contact with that site. A three-target scenario is used to test the performance of multiple bi-level hybrid optimal control algorithms. A bi-level hybrid algorithm is then utilized to solve fifteen-, and thirty-target scenarios and shown to have increasing benefit to complete enumeration as the number of targets is increased. Results indicate that the en-route inspection can be accomplished for a small increase in the delta-velocity required for a simple transfer to geostationary orbit given the same initial conditions.  相似文献   
94.
A comprehensive methodology for simulating 2 D dynamic stall at fluctuating freestream is proposed in this paper.2 D CFD simulation of a SC1095 airfoil exposed to a fluctuating freestream of Mach number 0.537 ± 0.205 and Reynolds number 6.1 × 10~6(based on the mean Mach number) and undergoing a 10° ± 10° pitch oscillation with a frequency of 4.25 Hz was conducted.These conditions were selected to be representative of the flow experienced by a helicopter rotor airfoil section in a real-life fast forward flight.Both constant freestream dynamic stall as well as fluctuating freestream dynamic stall simulations were conducted and compared.The methodology was carefully validated with experimental data for both transonic flow and dynamic stall under fluctuating freestream.Overall, the results suggest that the fluctuating freestream alters the dynamic stall mechanism documented for constant freestream in a major way, emphasizing that inclusion of this effect in the prediction of dynamic stall related rotor loads is imperative for rotor performance analysis and blades design.  相似文献   
95.
The observation to observation measurement association problem for dynamical systems can be addressed by determining if the uncertain admissible regions produced from each observation have one or more points of intersection in state space. An observation association method is developed which uses an optimization based approach to identify local Mahalanobis distance minima in state space between two uncertain admissible regions. A binary hypothesis test with a selected false alarm rate is used to assess the probability that an intersection exists at the point(s) of minimum distance. The systemic uncertainties, such as measurement uncertainties, timing errors, and other parameter errors, define a distribution about a state estimate located at the local Mahalanobis distance minima. If local minima do not exist, then the observations are not associated. The proposed method utilizes an optimization approach defined on a reduced dimension state space to reduce the computational load of the algorithm. The efficacy and efficiency of the proposed method is demonstrated on observation data collected from the Georgia Tech Space Object Research Telescope.  相似文献   
96.
97.
Altimetry is now routinely used to monitor stage variations over rivers, including in the Amazon basin. It is desirable for hydrologic studies to be able to combine altimetry from different satellite missions with other hydrogeodesy datasets such as leveled gauges and watershed topography. One requirement is to accurately determine altimetry bias, which could be different for river studies from the altimetry calibrated for deep ocean or lake applications. In this study, we estimate the bias in the Envisat ranges derived from the ICE-1 waveform retracking, which are nowadays widely used in hydrologic applications. As a reference, we use an extensive dataset of altitudes of gauge zeros measured by GPS collocated at the gauges. The thirty-nine gauges are spread along the major tributaries of the Amazon basin. The methodology consists in jointly modeling the vertical bias and spatial and temporal slope variations between altimetry series located upstream and downstream of each gauge. The resulting bias of the Envisat ICE-1 retracked altimetry over rivers is 1.044 ± 0.212 m, revealing a significant departure from other Envisat calibrations or from the Jason-2 ICE-1 calibration.  相似文献   
98.
The design and operation of the Genesis Solar-Wind Concentrator relies heavily on computer simulations. The computer model is described here, as well as the solar wind conditions used as simulation inputs, including oxygen charge state, velocity, thermal, and angular distributions. The simulation included effects such as ion backscattering losses, which also affect the mass fractionation of the instrument. Calculations were performed for oxygen, the principal element of interest, as well as for H and He. Ion fluences and oxygen mass fractionation are determined as a function of radius on the target. The results were used to verify that the instrument was indeed meeting its requirements, and will help prepare for distribution of the target samples upon return of the instrument to earth. The actual instrumental fractionation will be determined at that time by comparing solar-wind neon isotope ratios measured in passive collectors with neon in the Concentrator target, and by using a model similar to the one described here to extrapolate the instrumental fractionation to oxygen isotopes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
99.
The primary goal of the Genesis Mission is to collect solar wind ions and, from their analysis, establish key isotopic ratios that will help constrain models of solar nebula formation and evolution. The ratios of primary interest include 17O/16O and 18O/16O to ±0.1%, 15N/14N to ±1%, and the Li, Be, and B elemental and isotopic abundances. The required accuracies in N and O ratios cannot be achieved without concentrating the solar wind and implanting it into low-background target materials that are returned to Earth for analysis. The Genesis Concentrator is designed to concentrate the heavy ion flux from the solar wind by an average factor of at least 20 and implant it into a target of ultra-pure, well-characterized materials. High-transparency grids held at high voltages are used near the aperture to reject >90% of the protons, avoiding damage to the target. Another set of grids and applied voltages are used to accelerate and focus the remaining ions to implant into the target. The design uses an energy-independent parabolic ion mirror to focus ions onto a 6.2 cm diameter target of materials selected to contain levels of O and other elements of interest established and documented to be below 10% of the levels expected from the concentrated solar wind. To optimize the concentration of the ions, voltages are constantly adjusted based on real-time solar wind speed and temperature measurements from the Genesis ion monitor. Construction of the Concentrator required new developments in ion optics; materials; and instrument testing and handling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号