首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
  国内免费   3篇
航空   48篇
航天技术   20篇
航天   19篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1995年   5篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有87条查询结果,搜索用时 265 毫秒
71.
Spectra from the Coronal Diagnostic Spectrometer on board SOHO are used to compare density and temperature in coronal hole and quiet Sun regions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
72.
Medium energy neutral atom (MENA) imager for the IMAGE mission   总被引:1,自引:0,他引:1  
Pollock  C.J.  Asamura  K.  Baldonado  J.  Balkey  M.M.  Barker  P.  Burch  J.L.  Korpela  E.J.  Cravens  J.  Dirks  G.  Fok  M.-C.  Funsten  H.O.  Grande  M.  Gruntman  M.  Hanley  J.  Jahn  J.-M.  Jenkins  M.  Lampton  M.  Marckwordt  M.  McComas  D.J.  Mukai  T.  Penegor  G.  Pope  S.  Ritzau  S.  Schattenburg  M.L.  Scime  E.  Skoug  R.  Spurgeon  W.  Stecklein  T.  Storms  S.  Urdiales  C.  Valek  P.  van Beek  J.T.M.  Weidner  S.E.  Wüest  M.  Young  M.K.  Zinsmeyer  C. 《Space Science Reviews》2000,91(1-2):113-154
The Medium Energy Neutral Atom (MENA) imager was developed in response to the Imaging from the Magnetopause to the Aurora for Global Exploration (IMAGE) requirement to produce images of energetic neutral atoms (ENAs) in the energy range from 1 to 30 keV. These images will be used to infer characteristics of magnetospheric ion distributions. The MENA imager is a slit camera that images incident ENAs in the polar angle (based on a conventional spherical coordinate system defined by the spacecraft spin axis) and utilizes the spacecraft spin to image in azimuth. The speed of incident ENAs is determined by measuring the time-of-flight (TOF) from the entrance aperture to the detector. A carbon foil in the entrance aperture yields secondary electrons, which are imaged using a position-sensitive Start detector segment. This provides both the one-dimensional (1D) position at which the ENA passed through the aperture and a Start time for the TOF system. Impact of the incident ENA on the 1D position-sensitive Stop detector segment provides both a Stop-timing signal and the location that the ENA impacts the detector. The ENA incident polar angle is derived from the measured Stop and Start positions. Species identification (H vs. O) is based on variation in secondary electron yield with mass for a fixed ENA speed. The MENA imager is designed to produce images with 8°×4° angular resolution over a field of view 140°×360°, over an energy range from 1 keV to 30 keV. Thus, the MENA imager is well suited to conduct measurements relevant to the Earth's ring current, plasma sheet, and (at times) magnetosheath and cusp.  相似文献   
73.
Performing the sensitivity analyses of the contact conduction and the position of thermostat on the basis of the thermal model established, the study of thermal design is accomplished for the preparation of possible mechanical interface change of the satellite propulsion system depending on the satellite system design. A relatively simple thermal model is taken into consideration for the convenience of the analysis. A variety of the spacecraft bus voltages and the contact resistances are examined as well as the position of thermostat on propulsion components. As a consequence, even though the mechanical interface condition is changed on the same module, the successful thermal design could be achieved if we design the heater to have sufficiently large power with reference to the heritage value of contact resistance. Besides the reasonable performance on the thermal control is assured with the thermostat location errors, if the uncertainty in the position of thermostat is not quite large when assembling tank module.  相似文献   
74.
A method for monitoring atomic clocks on board Global Navigation Satellites System (GNSS) satellites is described to address the issue of clock related signal integrity in safety–critical applications of GNSS. The carrier-phase time transfer is employed in the clock monitoring method which enables tight tracking of the satellite onboard clocks and thus improves detectability of clock anomalies. Detecting onboard clock anomalies requires the ability to monitor clocks in real time, and a Kalman filter can then be utilized to estimate the phase offsets between the satellite clocks and ground clocks. This study, using the difference between the measured and predicted phase offset as a test statistic, sets a threshold for clock anomalies based on the prediction interval approach. Finally the validity of the monitoring method is examined by processing a set of real GNSS data that includes two recent incidents of clock anomalies in GNSS satellites.  相似文献   
75.
Chin Young Hwang   《Space Policy》2006,22(3):194-199
Korea has participated in space development only since the 1990s. Despite its short history, Korea has been increasing its technological capabilities with the successful experience of several national projects. The Korean government established a long-term space development plan in 1996, which suggests a clear way forward for space development up to 2015. Space activities in Korea will grow continuously. The direction of future space activities will be decided by the national space development plan. This paper discusses Korea's past and present space activities and future development projects.  相似文献   
76.
An adaptive control against uncertainties in tail-controlled STT (skid-to-turn) missiles is presented. First, we derive an analytic uncertainty model from a parametric affine missile model developed by the authors. Based on this analytic model, an adaptive feedback linearizing control law accompanied by a sliding mode control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme are demonstrated by simulation.  相似文献   
77.
This paper reports a first application of contingent valuation method to measure the value of information generated by earth science data from an environmental geostationary satellite payload called Geostationary Environmental Monitoring Satellite. The purpose of the space project is to improve the accuracy of air pollution information by enhancing air pollution monitoring and forecasting system coupled with conventional ground level monitoring stations located throughout South Korea.  相似文献   
78.
79.
The advent of far infrared arrays will change fundamentally the means of analyzing observations in this spectral region. Sources much fainter than traditional confusion limits will be extracted from images by using computer algorithms similar to CLEAN or DAOPHOT. We have conducted numerical experiments to evaluate these techniques and show that they will permit long integrations (10,000 sec at 60 m, 200 sec at 100 m) to achieve nearly photon-background-limited performance and hence very deep detection limits. The dominant noise sources—photon noise, confusion by distant galaxies, and confusion by IR cirrus — scale with nearly the same power of the telescope aperture. As a result, the integration times required to reach confusion limits are nearly aperture-independent.  相似文献   
80.
The determination of the composition of materials that make up comets is essential in trying to understand the origin of these primitive objects. The ices especially could be made in several different astrophysical settings including the solar nebula, protosatellite nebulae of the giant planets, and giant molecular clouds that predate the formation of the solar system. Each of these environments makes different ices with different composition. In order to understand the origin of comets, one needs to determine the composition of each of the ice phases. For example, it is of interest to know that comets contain carbon monoxide, CO, but it is much more important to know how much of it is a pure solid phase, is trapped in clathrate hydrates, or is adsorbed on amorphous water ice. In addition, knowledge of the isotopic composition of the constituents will help determine the process that formed the compounds. Finally, it is important to understand the bulk elemental composition of the nucleus. When these data are compared with solar abundances, they put strong constraints on the macro-scale processes that formed the comet. A differential scanning calorimeter (DSC) and an evolved gas analyzer (EGA) will make the necessary association between molecular constituents and their host phases. This combination of instruments takes a small (tens of mg) sample of the comet and slowly heats it in a sealed oven. As the temperature is raised, the DSC precisely measures the heat required, and delivers the gases to the EGA. Changes in the heat required to raise the temperature at a controlled rate are used to identify phase transitions, e.g., crystallization of amorphous ice or melting of hexagonal ice, and the EGA correlates the gases released with the phase transition. The EGA consists of two mass spectrometers run in tandem. The first mass spectrometer is a magnetic-sector ion-momentum analyzer (MAG), and the second is an electrostatic time-of-flight analyzer (TOF). The TOF acts as a detector for the MAG and serves to resolve ambiguities between fragments of similar mass such as CO and N2. Because most of the compounds of interest for the volatile ices are simple, a gas chromatograph is not needed and thus more integration time is available to determine isotopic ratios. A gamma-ray spectrometer (GRS) will determine the elemental abundances of the bulk cometary material by determining the flux of gamma rays produced from the interaction of the cometary material with cosmic ray produced neutrons. Because the gamma rays can penetrate a distance of several tens of centimeters a large volume of material is analyzed. The measured composition is, therefore, much more likely to be representative of the bulk comet than a very small sample that might have lost some of its volatiles. Making these measurements on a lander offers substantial advantages over trying to address similar objectives from an orbiter. For example, an orbiter instrument can determine the presence and isotopic composition of CO in the cometary coma, but only a lander can determine the phase(s) in which the CO is located and separately determine the isotopic composition of each reservoir of CO. The bulk composition of the nucleus might be constrained from separate orbiter analyses of dust and gas in the coma, but the result will be very model dependent, as the ratio of gas to dust in the comet will vary and will not necessarily be equal to the bulk value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号