首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7589篇
  免费   30篇
  国内免费   23篇
航空   3889篇
航天技术   2652篇
综合类   33篇
航天   1068篇
  2021年   52篇
  2019年   53篇
  2018年   99篇
  2017年   64篇
  2016年   59篇
  2014年   139篇
  2013年   181篇
  2012年   163篇
  2011年   228篇
  2010年   166篇
  2009年   259篇
  2008年   343篇
  2007年   188篇
  2006年   184篇
  2005年   187篇
  2004年   171篇
  2003年   248篇
  2002年   147篇
  2001年   255篇
  2000年   152篇
  1999年   189篇
  1998年   233篇
  1997年   160篇
  1996年   209篇
  1995年   273篇
  1994年   251篇
  1993年   150篇
  1992年   183篇
  1991年   99篇
  1990年   92篇
  1989年   198篇
  1988年   88篇
  1987年   88篇
  1986年   88篇
  1985年   253篇
  1984年   206篇
  1983年   181篇
  1982年   193篇
  1981年   231篇
  1980年   81篇
  1979年   61篇
  1978年   68篇
  1977年   69篇
  1976年   49篇
  1975年   87篇
  1974年   53篇
  1973年   53篇
  1972年   75篇
  1971年   56篇
  1970年   54篇
排序方式: 共有7642条查询结果,搜索用时 15 毫秒
271.
272.
The data of measuring the plasma density in the topside ionosphere for the South-Atlantic geomagnetic anomaly region are presented. It is shown that irregular plasma structures with a wide spectrum of irregularity scale (including large-scale structures with a dimension of order of some hundred kilometers) can be generated in the fields of electrostatic turbulence in inhomogeneous plasma.  相似文献   
273.
In a model experiment plants were grown in sealed chambers on expanded clay aggregate under the luminance of 150 W/m2 PAR and the temperature of 24 degrees C. Seven bacterial strains under investigation, replicated on nutrient medium surface in Petri dishes, were grown in the atmosphere of cultivated plants. Microbial response was evaluated by the difference between colony size in experiment and in control. In control, bacteria grew in the atmosphere of clean air. To study the effects of volatile metabolites of various plant on microbial growth, the experimental data were compared with the background values defined for each individual experiment. Expanded clay aggregate, luminance, temperature, and sealed chamber (without plants) for the background were the same. Volatile metabolites from 28-days old radish plants have been reliably established to have no effect on the growth of microbes under investigation. Metabolites of 30-days old dill and 50-days old garlic have been established to have reliable bacteriostatic effect on the growth of three bacterial strains. Dill and garlic have been found to have different range of effects of volatile substances on bacterial growth. Volatile metabolites of dill and garlic differed in their effect on the sensitivity spectrum of bacteria. An attempt has been made to describe the obtained data mathematically.  相似文献   
274.
Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals. Grant numbers: NAG5-4989.  相似文献   
275.
The deep space 1 extended mission   总被引:2,自引:0,他引:2  
The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.  相似文献   
276.
277.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.  相似文献   
278.
Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment.  相似文献   
279.
If life ever existed, or still exists, on Mars, its record is likely to be found in minerals formed by, or in association with, microorganisms. An important concept regarding interpretation of the mineralogical record for evidence of life is that, broadly defined, life perturbs disequilibria that arise due to kinetic barriers and can impart unexpected structure to an abiotic system. Many features of minerals and mineral assemblages may serve as biosignatures even if life does not have a familiar terrestrial chemical basis. Biological impacts on minerals and mineral assemblages may be direct or indirect. Crystalline or amorphous biominerals, an important category of mineralogical biosignatures, precipitate under direct cellular control as part of the life cycle of the organism (shells, tests, phytoliths) or indirectly when cell surface layers provide sites for heterogeneous nucleation. Biominerals also form indirectly as by-products of metabolism due to changing mineral solubility. Mineralogical biosignatures include distinctive mineral surface structures or chemistry that arise when dissolution and/or crystal growth kinetics are influenced by metabolic by-products. Mineral assemblages themselves may be diagnostic of the prior activity of organisms where barriers to precipitation or dissolution of specific phases have been overcome. Critical to resolving the question of whether life exists, or existed, on Mars is knowing how to distinguish biologically induced structure and organization patterns from inorganic phenomena and inorganic self-organization. This task assumes special significance when it is acknowledged that the majority of, and perhaps the only, material to be returned from Mars will be mineralogical.  相似文献   
280.
Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter’s icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号