全文获取类型
收费全文 | 5984篇 |
免费 | 45篇 |
国内免费 | 15篇 |
专业分类
航空 | 2963篇 |
航天技术 | 2075篇 |
综合类 | 16篇 |
航天 | 990篇 |
出版年
2021年 | 50篇 |
2019年 | 44篇 |
2018年 | 99篇 |
2017年 | 78篇 |
2016年 | 73篇 |
2015年 | 42篇 |
2014年 | 127篇 |
2013年 | 152篇 |
2012年 | 150篇 |
2011年 | 204篇 |
2010年 | 151篇 |
2009年 | 227篇 |
2008年 | 287篇 |
2007年 | 169篇 |
2006年 | 129篇 |
2005年 | 154篇 |
2004年 | 148篇 |
2003年 | 188篇 |
2002年 | 125篇 |
2001年 | 206篇 |
2000年 | 120篇 |
1999年 | 143篇 |
1998年 | 167篇 |
1997年 | 113篇 |
1996年 | 161篇 |
1995年 | 206篇 |
1994年 | 189篇 |
1993年 | 99篇 |
1992年 | 139篇 |
1991年 | 62篇 |
1990年 | 66篇 |
1989年 | 148篇 |
1988年 | 65篇 |
1987年 | 56篇 |
1986年 | 66篇 |
1985年 | 172篇 |
1984年 | 171篇 |
1983年 | 135篇 |
1982年 | 133篇 |
1981年 | 170篇 |
1980年 | 44篇 |
1979年 | 50篇 |
1978年 | 51篇 |
1977年 | 46篇 |
1976年 | 34篇 |
1975年 | 63篇 |
1974年 | 44篇 |
1973年 | 37篇 |
1972年 | 52篇 |
1971年 | 35篇 |
排序方式: 共有6044条查询结果,搜索用时 0 毫秒
111.
112.
Conte E. De Maio A. Ricci G. 《IEEE transactions on aerospace and electronic systems》2002,38(2):415-426
We address the estimation of the structure of the covariance matrix and its application to adaptive radar detection of coherent pulse trains in clutter-dominated disturbance modeled as a compound-Gaussian process. For estimation purposes we resort to range cells in spatial proximity with that under test and assume that these cells, free of signal components, can be clustered into groups of data with one and the same value of the texture. We prove that, plugging the proposed estimator of the structure of the covariance matrix into a previously derived detector, based upon the generalized likelihood ratio test (GLRT), leads to an adaptive detector which ensures the constant false alarm rate (CFAR) property with respect to the clutter covariance matrix as well as the statistics of the texture. Finally, we show that this adaptive receiver has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications 相似文献
113.
V D Kern 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):697-706
In order to achieve perfect positioning of their lamellae for spore dispersal, fruiting bodies of higher fungi rely on the omnipresent force gravity. Only accurate negatively gravitropic orientation of the fruiting body cap will guarantee successful reproduction. A spaceflight experiment during the STS-55 Spacelab mission in 1993 confirmed that the factor gravity is employed for spatial orientation. Most likely every hypha in the transition zone between the stipe and the cap region is capable of sensing gravity. Sensing presumably involves slight sedimentation of nuclei which subsequently causes deformation of the net-like arrangement of F-actin filament strands. Hyphal elongation is probably driven by hormone-controlled activation and redistribution of vesicle traffic and vesicle incorporation into the vacuoles and cell walls to subsequently cause increased water uptake and turgor pressure. Stipe bending is achieved by way of differential growth of the flanks of the upper-most stipe region. After reorientation to a horizontal position, elongation of the upper flank hyphae decreases 40% while elongation of the lower flank slightly increases. On the cellular level gravity-stimulated vesicle accumulation was observed in hyphae of the lower flank. 相似文献
114.
As Ulysses moved inward and southward from mid-1992 to early 1994 we noticed the occasional occurrence of inter-events, lasting about 10 days and falling between the recurrent events, observed at proton energies of 0.48–97 MeV, associated with Corotating Interaction Regions (CIR). These inter-events were present for several sequences of two or more solar rotations at intensity levels around 1% of those of the neighbouring main events. When we compared the Ulysses events with those measured on IMP-8 at 1 AU we saw that the inter-events appeared at Ulysses after the extended emission (>10 days) of large fluxes of solar protons of the same energy that lasted at least one solar rotation at 1 AU. The inter-events fell completely within the rarefaction regions (dv/dt<0) of the recurrent solar wind streams. The interplanetary magnetic field (IMF) lines in the rarefactions map back to the narrow range of longitudes at the Sun which mark the eastern edge of the source region of the high speed stream. Thus the inter-events are propagating at mid-latitudes to Ulysses along field lines free from stream-stream interactions. They are seen in the 0.39–1.28 MeV/nucleon He, which exhibit a faster decay, but almost never in the 38–53 keV electrons. We show that the inter-events are unlikely to be accelerated by reverse shocks associated with the CIRs and that they are more likely to be accelerated by sequences of solar events and transported along the IMF in the rarefactions of the solar wind streams. 相似文献
115.
Energetic particle observations in the interplanetary medium provide fundamental information about the origin, development
and structure of coronal mass ejections. This paper reviews the status of our understanding of the ways in which particles
are energised at the Sun in association with CMEs. This understanding will remain incomplete until the relationship between
CMEs and flares is determined and we know the topology of the associated magnetic fields. The paper also discusses the characteristics
of interplanetary CMEs that may be probed using particle observations. 相似文献
116.
This paper reviews scattering theory required for analysis of light reflected by planetary atmospheres. Section 1 defines the radiative quantities which are observed. Section 2 demonstrates the dependence of single-scattered radiation on the physical properties of the scatterers. Section 3 describes several methods to compute the effects of multiple scattering on the reflected light. 相似文献
117.
Deborah L. Domingue Clark R. Chapman Rosemary M. Killen Thomas H. Zurbuchen Jason A. Gilbert Menelaos Sarantos Mehdi Benna James A. Slavin David Schriver Pavel M. Trávníček Thomas M. Orlando Ann L. Sprague David T. Blewett Jeffrey J. Gillis-Davis William C. Feldman David J. Lawrence George C. Ho Denton S. Ebel Larry R. Nittler Faith Vilas Carle M. Pieters Sean C. Solomon Catherine L. Johnson Reka M. Winslow Jörn Helbert Patrick N. Peplowski Shoshana Z. Weider Nelly Mouawad Noam R. Izenberg William E. McClintock 《Space Science Reviews》2014,181(1-4):121-214
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition. 相似文献
118.
Roy E. Cameron 《Space Science Reviews》1963,2(2):297-312
New frontiers in soil science are currently found in the investigation of soils in harsh, terrestrial and simulated extraterrestrial environments, the development of new methods and probes for soil characterization, and the eventual investigation, characterization, and development of extraterrestrial soil. Current aspects of space science involving soil studies are presented, including a more detailed soil study program involving the microflora of desert soil ecosystems. Basic precepts are given for preparation, investigation, and use of extraterrestrial soil.Contribution from the Bioscience Group of the Chemistry Section, Space Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. Presented as an invitational paper before the Synapsis Club, University of California, Riverside, California, December 3, 1962. 相似文献
119.
M.D. Ngobeni M.S. Potgieter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent. 相似文献
120.
N. Novikova O. Gusev N. Polikarpov E. Deshevaya M. Levinskikh V. Alekseev T. Okuda M. Sugimoto V. Sychev А. Grigoriev 《Acta Astronautica》2011,68(9-10):1574-1580
The RF SRC—Institute of Biomedical Problems, Russian Academy of Sciences, developed Biorisk hardware to study the effects of long-term exposure of dormant forms of various organisms to outer space and used it to complete a series of experiments on the Russian Module (RM) of the International Space Station (ISS).The experiments were performed using prokaryotes (Bacillus bacteria) and eukaryotes (Penicillium, Aspergillus, and Cladosporium fungi), as well as spores, dormant forms of higher plants, insects, lower crustaceans, and vertebrates. The biological samples were housed in two containers that were exposed to outer space for 13 or 18 months. The results of the 18-month experiment showed that, in spite of harsher temperature than in the first study, most specimens remained viable.These experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions. 相似文献