首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17858篇
  免费   49篇
  国内免费   125篇
航空   9891篇
航天技术   5230篇
综合类   241篇
航天   2670篇
  2021年   159篇
  2018年   207篇
  2016年   159篇
  2014年   434篇
  2013年   513篇
  2012年   413篇
  2011年   580篇
  2010年   403篇
  2009年   756篇
  2008年   797篇
  2007年   365篇
  2006年   425篇
  2005年   369篇
  2004年   422篇
  2003年   511篇
  2002年   469篇
  2001年   552篇
  2000年   353篇
  1999年   449篇
  1998年   418篇
  1997年   313篇
  1996年   369篇
  1995年   436篇
  1994年   405篇
  1993年   354篇
  1992年   309篇
  1991年   248篇
  1990年   233篇
  1989年   391篇
  1988年   207篇
  1987年   239篇
  1986年   231篇
  1985年   636篇
  1984年   515篇
  1983年   404篇
  1982年   486篇
  1981年   609篇
  1980年   244篇
  1979年   185篇
  1978年   189篇
  1977年   144篇
  1976年   155篇
  1975年   186篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The ability to observe meteorological events in the polar regions of the Earth from satellite celebrated an anniversary, with the launch of TIROS-I in a pseudo-polar orbit on 1 April 1960. Yet, after 50 years, polar orbiting satellites are still the best view of the polar regions of the Earth. The luxuries of geostationary satellite orbit including rapid scan operations, feature tracking, and atmospheric motion vectors (or cloud drift winds), are enjoyed only by the middle and tropical latitudes or perhaps only cover the deep polar regions in the case of satellite derived winds from polar orbit. The prospect of a solar sailing satellite system in an Artificial Lagrange Orbit (ALO, also known as “pole sitters”) offers the opportunity for polar environmental remote sensing, communications, forecasting and space weather monitoring. While there are other orbital possibilities to achieve this goal, an ALO satellite system offers one of the best analogs to the geostationary satellite system for routine polar latitude observations.  相似文献   
992.
In this paper, Science Operations Planning Expertise (SOPE) is defined as the expertise that is held by people who have the two following qualities. First they have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Second, they can be used, on request and at least, to provide with advice the teams that design and implement science operations systems in order to optimise the performance and productivity of the mission. However, the relevance and use of such SOPE early on during the Mission Design Phase (MDP) is not sufficiently recognised. As a result, science operations planning is often neglected or poorly assessed during the mission definition phases. This can result in mission architectures that are not optimum in terms of cost and scientific returns, particularly for missions that require a significant amount of science operations planning. Consequently, science operations planning difficulties and cost underestimations are often realised only when it is too late to design and implement the most appropriate solutions. In addition, higher costs can potentially reduce both the number of new missions and the chances of existing ones to be extended. Moreover, the quality, and subsequently efficiency, of SOPE can vary greatly. This is why we also believe that the best possible type of SOPE requires a structure similar to the ones of existing bodies of expertise dedicated to the data processing such as the International Planetary Data Alliance (IPDA), the Space Physics Archive Search and Extract (SPASE) or the Planetary Data System (PDS). Indeed, this is the only way of efficiently identifying science operations planning issues and their solutions as well as of keeping track of them in order to apply them to new missions. Therefore, this paper advocates for the need to allocate resources in order to both optimise the use of SOPE early on during the MDP and to perform, at least, a feasibility study of such a more structured SOPE.  相似文献   
993.
This paper studies the efficiency of geomagnetic solar flare effects (gsfe) in X solar flare detection; so during the period 1999–2007 a comparison between solar flare (sf) observed by satellites of the Geostationary Operational Environmental Satellite (GOES) programme and gsfe published by the Service International des Indices Geomagnetiques (SIIG) is made.  相似文献   
994.
In the present work values of peak electron density (NmF2) and height of F2 ionospheric layer (hmF2) over Tehran region at a low solar activity period are compared with the predictions of the International Reference Ionosphere models (IRI-2001 and IRI-2007). Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran from July 2006 to June 2007 are used to perform the calculations. Formulations proposed by  and  are utilized to calculate the hmF2. The International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) options are employed to run the IRI-2001 and IRI-2007 models. Results show that both IRI-2007 and IRI-2001 can successfully predict the NmF2 and hmF2 over Tehran region. In addition, the study shows that predictions of IRI-2007 model with CCIR coefficient has closer values to the observations. Furthermore, it is found that the monthly average of the percentage deviation between the IRI models predictions and the values of hmF2 and NmF2 parameters are less than 10% and 21%, respectively.  相似文献   
995.
The γ-ray emission of blazar jets shows a pronounced variability and this feature provides limits to the size and to the speed of the emitting region. We study the γ-ray variability of bright blazars using data from the first 18 months of activity of the Large Area Telescope on the Fermi Gamma-Ray Space Telescope. From the daily light-curves of the blazars characterized by a remarkable activity, we firstly determine the minimum variability time-scale, giving an upper limit for the size of the emitting region of the sources, assumed to be spheroidal blobs in relativistic motion. These regions must be smaller than ∼10−3 parsec. Another interesting time-scale is the duration of the outbursts. We conclude that they cannot correspond to radiation produced by a single blob moving relativistically along the jet, but they are either the signature of emission from a standing shock extracting energy from a modulated jet, or the superposition of a number of flares occurring on a shorter time-scale. We also derive lower limits on the bulk Lorentz factor needed to make the emitting region transparent for gamma-rays interacting through photon–photon collisions.  相似文献   
996.
One of global processes in ionosphere–thermosphere–magnetosphere system is the geomagnetic storms. It is of great importance to develop an algorithm that auto-detects sudden commencement because it could be an indicator of onset of the geomagnetic storm. Automatic detection of geomagnetic sudden commencement is based on time–frequency clusters generated by spectrogram. Proposed algorithm is tested on data set collected from stations belong to the international real-time magnetic observatory network (INTERMAGNET). Maximum standard deviation of algorithm detection times is observed to be one minute of the corresponding arrival times published by National Geophysical Data Center (NGDC).  相似文献   
997.
The cosmic ray ground level enhancement on January 20, 2005 is among the largest recorded events in the history of cosmic ray measurements. The solar protons of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps following major solar disturbances. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The estimation of ionization rates is based on a numerical model for cosmic ray induced ionization. The evolution of atmospheric cascade is performed with the CORSIKA 6.52 code using FLUKA 2006b and QGSJET II hadron interaction models. The atmospheric ion rate ionization is explicitly obtained for 40°N, 60°N and 80°N latitudes. The time evolution of obtained ion rates is presented. It is demonstrated that ionization effect is negative for 40°N and small for 60°N, because of accompanying Forbush decrease. The ionization effect is significant only in sub-polar and polar atmosphere during the major ground level enhancement of 20 January 2005.  相似文献   
998.
Adequate representations of diverse dynamical processes in general circulation models (GCM) are necessary to obtain reliable simulations of the present and the future. The parameterization of orographic gravity wave drag (GWD) is one of the critical components of GCM. It is therefore convenient to evaluate whether standard orographic GWD parameterizations are appropriate. One alternative is to study the generation of gravity waves (GW) with horizontal resolutions that are higher than those used in current GCM simulations. Here we assess the seasonal pattern of topographic GW momentum flux (GWMF) generation for the late 20th and 21st centuries in a downscaling using the Rossby Centre regional atmospheric model under the Intergovernmental Panel on Climate Change A1B emission conditions. We focus on one of the world’s strongest extra-tropical GW zones, the Andes Mountains at mid-latitudes in the Southern Hemisphere. The presence of two GCM sub-grid scale structures locally contributing to GWMF (one positive and one negative) is found to the East of the mountains. For the late 21st century the strength of these structures during the GW high season increases around 23% with respect to the late 20th century, but the GWMF average over GCM grid cell scales remains negative and nearly constant around −0.015 Pa. This constitutes a steady significant contribution during GW high season, which is not related to the GWMF released by individual sporadic strong GW events. This characteristic agrees with the fact that no statistically significant variation in GWMF at source level has been observed in recent GCM simulations of atmospheric change induced by increases in greenhouse gases.  相似文献   
999.
We have conducted a feasibility study for the geostationary monitoring of the diurnal variation of tropospheric NO2 over Tokyo. Using NO2 fields from a chemical transport model, synthetic spectra were created by a radiative transfer model, SCIATRAN, for summer and winter cases. We then performed a Differential Optical Absorption Spectroscopy (DOAS) analysis to retrieve NO2 slant column densities (SCDs), and after converting SCDs into vertical column densities (VCDs), we estimated the precision of the retrieved VCDs. The simulation showed that signal-to-noise ratio (SNR) ? 500 is needed to detect the diurnal variation and that SNR ? 1000 is needed to observe the local minimum occurring in the early afternoon (LT13–14) in summer. In winter, the detection of the diurnal variation during LT08–15 needs SNR ? 500, and SNR ? 1000 is needed if early morning (LT07) and early evening (LT16) are included. The currently discussed sensor specification for the Japanese geostationary satellite project, GMAP-Asia, which has a horizontal resolution of 10 km and a temporal resolution of 1hr, has demonstrated the performance of a precision of several percent, which is approximately corresponding to SNR = 1000–2000 during daytime and SNR ? 500 in the morning and evening. We also discuss possible biases caused by the temperature dependence of the absorption cross section utilized in the DOAS retrieval, and the effect of uncertainties of surface albedo and clouds on the estimation of precisions.  相似文献   
1000.
We consider a special relativistic effect, known as the Poynting–Robertson effect, on various types of trajectories of solar sails. Since this effect occurs at order v?/c, where v? is the transversal speed relative to the sun, it can dominate over other special relativistic effects, which occur at order v2/c2. While solar radiation can be used to propel the solar sail, the absorbed portion of it also gives rise to a drag force in the transversal direction. For escape trajectories, this diminishes the cruising velocity, which can have a cumulative effect on the heliocentric distance. For a solar sail directly facing the sun in a bound orbit, the Poynting–Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the sun. We also consider this effect for non-Keplerian orbits in which the solar sail is tilted in the azimuthal direction. While in principle the drag force could be counter-balanced by an extremely small tilt of the solar sail in the polar direction, periodic adjustments are more feasible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号