首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3490篇
  免费   25篇
  国内免费   5篇
航空   1779篇
航天技术   1196篇
综合类   12篇
航天   533篇
  2021年   30篇
  2019年   27篇
  2018年   63篇
  2017年   46篇
  2016年   47篇
  2015年   23篇
  2014年   67篇
  2013年   84篇
  2012年   81篇
  2011年   118篇
  2010年   89篇
  2009年   135篇
  2008年   183篇
  2007年   90篇
  2006年   77篇
  2005年   94篇
  2004年   86篇
  2003年   113篇
  2002年   70篇
  2001年   122篇
  2000年   73篇
  1999年   83篇
  1998年   106篇
  1997年   70篇
  1996年   95篇
  1995年   131篇
  1994年   102篇
  1993年   62篇
  1992年   90篇
  1991年   34篇
  1990年   39篇
  1989年   86篇
  1988年   43篇
  1987年   37篇
  1986年   35篇
  1985年   96篇
  1984年   92篇
  1983年   82篇
  1982年   83篇
  1981年   90篇
  1980年   27篇
  1979年   27篇
  1978年   29篇
  1977年   27篇
  1976年   19篇
  1975年   35篇
  1974年   25篇
  1973年   18篇
  1972年   33篇
  1971年   18篇
排序方式: 共有3520条查询结果,搜索用时 15 毫秒
891.
The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2–80 cm-3. This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wave analysis function of the instrument is provided by FFT calculation. Compared with the swept frequency wave analysis of previous sounders, this technique has several new capabilities. In particular, when used for natural wave measurements (which cover here the 2–80 kHz range), it offers a flexible trade-off between time and frequency resolutions. In the basic nominal operational mode, the density is measured every 28 s, the frequency and time resolution for the wave measurements are about 600 Hz and 2.2 s, respectively. Better resolutions can be obtained, especially when the spacecraft telemetry is in burst mode. Special attention has been paid to the coordination of WHISPER operations with the wave instruments, as well as with the low-energy particle counters. When operated from the multi-spacecraft Cluster, the WHISPER instrument is expected to contribute in particular to the study of plasma waves in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere.  相似文献   
892.
Exponential mixture probability density functions (pdfs) are shown to be useful models of radar sea clutter. The variability of certain parameters leads to estimation error and degradation in the performance of detection algorithms derived from this model. Robust implementations are introduced by assuming that parameters are known within certain intervals and selecting values to prevent an excessive number of false alarms. An empirical study demonstrates an average 6-9 dB gain in comparison with a constant false-alarm rate (CFAR) processor  相似文献   
893.
    
Cassini radio science investigations will be conducted both during the cruise (gravitational wave and conjunction experiments) and the Saturnian tour of the mission (atmospheric and ionospheric occultations, ring occultations, determinations of masses and gravity fields). New technologies in the construction of the instrument, which consists of a portion on-board the spacecraft and another portion on the ground, including the use of the Ka-band signal in addition to that of the S- and X-bands, open opportunities for important discoveries in each of the above scientific areas, due to increased accuracy, resolution, sensitivity, and dynamic range.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
894.
895.
    
Carlson  C.W.  McFadden  J.P.  Turin  P.  Curtis  D.W.  Magoncelli  A. 《Space Science Reviews》2001,98(1-2):33-66
The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.  相似文献   
896.
Cardiovascular assessment by ultrasound methods was performed during two long duration (1 month) Head Down Tilt (HDT) on 6 healthy volunteers. On a first 1 month HDT session, 3 of the 6 subjects (A, B, C) had daily several lower body negative pressure tests (LBNP), whereas the 3 subjects remaining (D, E, F) rested without LBNP. On a second 1 month HDT session subjects D, E, and F had daily LBNP tests and the A, B and C subjects did not. The cardiac function was assessed by Echocardiography, (B mode, TM mode). On all the "6 non LBNP" subjects the left ventricule diastolic volume (LVDV), the stroke volume (SV) and the cardiac output (CO) increase (+10%, -15%) after HDT then decrease and remain inferior (-5%, -5%) or equal to the basal value during the HDT. Immediately after the end of the HDT the heart rate (HR) increase (+10%, +30%) whereas the cardiac parameters decrease weakly (-5%, -10%) and normalize after 3 days of recovery. On the "6 LBNP" subjects the LVDV, SV and CO increase (+10%, 15%) after 1 h HDT as in the previous group then decrease but remain superior (+5%, +15%) or equal to the basal value. After the HDT session, the HR is markedly increased (+20%, +40%) the LVDV and SV decrease (-15%, -20%) whereas the CO increases or decreases depending on the amplitude of the HR variations. These parameters do not completely normalize after 3 day's recovery. Repeated LBNP sessions have a significant effect on the cardiovascular function as it maintains all cardiac parameters above the basal value. The LBNP manoeuvre can be considered as an efficient countermeasure to prevent cardiac disadaptation induced by HDT position and probably microgravity.  相似文献   
897.
In the context of space radiation, it is important to know whether the human population includes genetically predisposed radiosensitive subsets. One possibility is that haploinsufficiency for ATM confers radiosensitivity, and this defect involves 1-3% of the population. Using knock-out mice we chose to study cataractogenesis in the lens and oncogenic transformation in mouse embryo fibroblasts to assay for effects of ATM deficiency. Radiation induced cataracts appeared earlier in the heterozygous versus wild-type animals following exposure to either gamma rays or 1 GeV/nucleon iron ions. In addition, it was found that embryo fibroblasts of Atm heterozygotes showed an increased incidence of oncogenic transformation compared with their normal litter-matched counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally significant radio sensitive subpopulation. Knock-out mice are now available for other genes including BRCA1 and 2, and Mrad9. An exciting possibility is the creation of double heterozygotes for pairs of mutated genes that function in the same signal transduction pathway, and consequently confer even greater radiosensitivity.  相似文献   
898.
Determination of the body pattern in Xenopus embryos is known to involve at least six steps. One of these steps can be experimentally simulated by inclining the fertilized egg with respect to gravity or centrifugal force (10-30 g x 4 min, directed 90 degrees to the animal-vegetal axis). In these eggs, the dorsal structures of the body axis form from the side of the egg that was uppermost in the gravitational or centrifugal field. This topography is seen even if the sperm entry point side (the prospective ventral side in control eggs) was uppermost. In addition, conjoined twin embryos form at very high frequencies in response to certain conditions of single or double centrifugation. Cytological analysis shows that the dorsal structures invariably form from the side(s) of the egg away from which vegetal cytoplasm was displaced. This is similar to the situation in the unperturbed egg, where the subcortical cytoplasm of the vegetal hemisphere rotates some 30 degrees relative to the surface, and the dorsal structures form from the side of the egg away from which the subcortical cytoplasm moved. The displacements elicited by centrifugation probably substitute for the normal displacements brought about by the subcortical rotation. These and other data suggest that the subcortical rotation is a crucial step in the process of axis determination. The subcortical rotation is an autonomous activity of the activated egg, and can displace cytoplasm against gravity. I believe that the subcortical rotation will function normally at microgravity, and I expect that overall development and axis polarity at microgravity will be normal. This will be tested in spaceflight.  相似文献   
899.
A new event-oriented solar proton prediction model has been developed and implemented at the USAF Space Environment forecast facility. This new model generates predicted solar proton time-intensity profiles for a number of user adjustable energy ranges and is also capable of making predictions for the heavy ion flux. The computer program is designed so a forecaster can select inputs based on the data available in near real-time at the forecast center as the solar flare is occurring. The predicted event amplitude is based on the electromagnetic emission parameters of the solar flare (either microwave or soft X-ray emission) and the solar flare position on the sun. The model also has an update capability where the forecaster can normalize the prediction to actual spacecraft observations of spectral slope and particle flux as the event is occurring in order to more accurately predict the future time-intensity profile of the solar particle flux. Besides containing improvements in the accuracy of the predicted energetic particle event onset time and magnitude, the new model converts the predicted solar particle flux into an expected radiation dose that might be experienced by an astronaut during EVA activities or inside the space shuttle.  相似文献   
900.
Most cytoplasmic regions of fertilized amphibian eggs move with respect to the gravity vector in experimentally gravity oriented eggs. The pattern and extent of this movement varies among different batches of eggs. This variation in apparent cytoplasmic viscosity (or, conversely, cytoplasmic mobility) can be correlated with variations in subsequent morphogenesis of experimental, gravitationally manipulated eggs. Therefore, the proper interpretation of gravity experiments with amphibian eggs requires that one understand the subcellular basis for this variation on cytoplasmic mobility. Variation in the packing of the major cytoplasmic organelle, the yolk platelets, or the organization and amount of cytoskeletal components may explain the variation in cytoplasmic mobility. Evidence is presented that the variation in yolk volume density (fraction of total cytoplasmic volume occupied by yolk platelets) does not account for the variation in cytoplasmic mobility in Xenopus laevis eggs. Experimental evidence from cold-shocked inverted eggs indicates that microtubules may be involved in determining cytoplasmic mobility. However, quantitative evidence that the microtubule levels and state of the microtubules (polymerized vs. non-polymerized) in the whole Xenopus laevis egg does not correlate directly with cytoplasmic mobility is presented. The apparent conflict these data represent regarding the role of the cytoskeleton in determining cytoplasmic mobility is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号