首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3551篇
  免费   23篇
  国内免费   7篇
航空   1816篇
航天技术   1212篇
综合类   12篇
航天   541篇
  2021年   32篇
  2019年   29篇
  2018年   66篇
  2017年   49篇
  2016年   48篇
  2015年   24篇
  2014年   67篇
  2013年   86篇
  2012年   83篇
  2011年   119篇
  2010年   90篇
  2009年   138篇
  2008年   183篇
  2007年   91篇
  2006年   78篇
  2005年   94篇
  2004年   86篇
  2003年   113篇
  2002年   70篇
  2001年   126篇
  2000年   74篇
  1999年   86篇
  1998年   107篇
  1997年   71篇
  1996年   96篇
  1995年   134篇
  1994年   103篇
  1993年   62篇
  1992年   90篇
  1991年   35篇
  1990年   39篇
  1989年   87篇
  1988年   43篇
  1987年   37篇
  1986年   35篇
  1985年   98篇
  1984年   94篇
  1983年   86篇
  1982年   87篇
  1981年   95篇
  1980年   28篇
  1979年   27篇
  1978年   30篇
  1977年   27篇
  1976年   19篇
  1975年   36篇
  1974年   26篇
  1973年   18篇
  1972年   33篇
  1971年   18篇
排序方式: 共有3581条查询结果,搜索用时 125 毫秒
501.
A demonstration program is described: Weapons System Open Architecture (WSOA) - funded jointly by the Air Force Research Laboratory (AFRL), DARPA, and the Open Systems Joint Task Force (OSJTF). WSOA provides an open systems "bridge" between legacy embedded mission systems and off-board C3I sources and systems. This "bridge" is used to support Internet-like connectivity between command and attack nodes. The foundation of this bridge is the creation of a Common Object Request Broker Architecture (CORBA) layer over Link 16. In addition, application of quality of service techniques and resource management technologies will ensure the timely exchange and processing of mission critical information by both attack and command nodes in even the most time-sensitive situations.  相似文献   
502.
Traditionally modeling for space science has concentrated on developing simulations for individual components of the solar terrestrial system. In reality these regions are coupled together. This coupling can be as simple as the driving of the magnetosphere – ionosphere – thermosphere system by the solar wind or as a complicated as the feedback of the ionospheric conductivity and currents on the magnetosphere. As part of the CISM project we are beginning a concentrated effort to compressively model the entire system. This approach includes chains of models. In the first chain physics based numerical models are utilized while in the second chain empirical models are coupled together. The first half of this paper discusses the numerical modeling approach by highlighting the coupling of pairs of regions within the system. In the second section we present results from empirical models which are combined to make long term forecasts of conditions in the geospace environment. It is expected that a validated and reliable forecast model for space weather can be obtained by combining the strongest elements of each chain.  相似文献   
503.
Defense radar research and development in Australia is today largely, but not exclusively, confined within Australia's Defense Science and Technology Organization, DSTO, and its R&D collaborators in universities. Radar has a long history in Australia, dating back to World War II links with British defense radar development, and radar R&D continues to be an important focus within DSTO. It is impossible, in the context of a brief conference paper, to give other than the broadest-brush picture of Australian radar development over a half-century or more. So the approach taken is necessarily highly selective and focuses specifically on several illustrative development projects, in an attempt to convey the flavor of national radar research priorities, the way they drive R&D and likely future directions. Despite the escalating requirement for a national skills base in defense radar and allied technologies, there are currently legitimate concerns about the robustness of this base. Recruitment of high-caliber researchers into the field of radar and management of radar research careers are issues currently presenting major challenges. A number of initiatives are in place linking DSTO with university research; a recent effort to enhance the stature and visibility of radar research in Australia is the establishment of the Centre of Expertise in Microwave Radar as a joint venture between DSTO and Adelaide University.  相似文献   
504.
The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.  相似文献   
505.
506.
507.
Development of an advanced rocket propellant handler's suit.   总被引:2,自引:0,他引:2  
D F Doerr 《Acta Astronautica》2001,49(3-10):463-468
Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit.  相似文献   
508.
A digital processing algorithm for fine-resolution imaging of synthetic aperture radar (SAR) moving targets is described. The targets may have any translational and rotational motion components relative to the data collection platform. The algorithm requires the presence of up to three prominent points in the image of the target; the signals from these points provide estimates of the unknown target motion parameters. Phase compensation and data formatting based on these estimates eliminate motion-induced phase errors. This algorithm has been implemented on a VAX computer and used to process both simulated and real SAR data of moving targets. Results obtained using the simulated data are presented  相似文献   
509.
Two methods for constructing robust polarimetric constant-false-alarm-rate (CFAR) detectors that use elements of the scattering matrix are discussed. Both methods use robust estimators to recognize outliers and exclude them from further calculations. The first method weighs each sample of the surrounding vectors, and vectors that appear to be outliers are weighted with lower values than the others. The second method uses cluster algorithms to arrange the data in different clusters; some clusters contain the outliers, and others contain observations assumed to come from the main body of the data. The detectors are intended to be used in multitarget and nonhomogeneous-clutter environments  相似文献   
510.
The architecture and technology features of the next-generation (NGR) digital GPS (Global Positioning System) receiver manufactured by Collin are described. The project's objective was to develop an advanced GPS receiver chipset with high antijam capabilities. The program, initiated in 1985, has provided the technology for miniature receiver products for both unmanned and manned vehicle applications. A two-channel version of the receiver is in full-scale development for tactical missile applications. A five-channel version is being tested and evaluated as a drop-in replacement for RCVR-3A, the US Department of Defense standard high dynamic receiver. The NGR design started with the digital signal processing architecture developed for the Defense Advanced Research Project Agency (DARPA) hand-held GPS receiver. Enhancements were made to improve the antijam and signal acquisition performance. Producible, qualifiable and cost-effective silicon monolithic microwave integrated circuits and semicustom digital technologies were used to develop the core GPS chipset. A system design approach was established to permit reuse of mature and validated GPS software  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号