首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3512篇
  免费   22篇
  国内免费   7篇
航空   1787篇
航天技术   1200篇
综合类   12篇
航天   542篇
  2021年   30篇
  2019年   27篇
  2018年   63篇
  2017年   46篇
  2016年   47篇
  2015年   23篇
  2014年   69篇
  2013年   84篇
  2012年   83篇
  2011年   121篇
  2010年   91篇
  2009年   135篇
  2008年   184篇
  2007年   92篇
  2006年   81篇
  2005年   95篇
  2004年   86篇
  2003年   113篇
  2002年   72篇
  2001年   123篇
  2000年   74篇
  1999年   83篇
  1998年   106篇
  1997年   70篇
  1996年   95篇
  1995年   131篇
  1994年   102篇
  1993年   62篇
  1992年   90篇
  1991年   34篇
  1990年   39篇
  1989年   86篇
  1988年   43篇
  1987年   37篇
  1986年   35篇
  1985年   96篇
  1984年   92篇
  1983年   82篇
  1982年   83篇
  1981年   90篇
  1980年   27篇
  1979年   27篇
  1978年   29篇
  1977年   27篇
  1976年   19篇
  1975年   35篇
  1974年   25篇
  1973年   18篇
  1972年   33篇
  1971年   18篇
排序方式: 共有3541条查询结果,搜索用时 15 毫秒
121.
The pre-storm behavior of NmF2 and TEC over an equatorial station, Trivandrum (8.47°N, 76.91°E, dip 0.6°S) and a low latitude station, Waltair (17.7°N,83.3°E, dip 20°N) has been studied for a total of 18 strong geomagnetic storms with DST ? −100 nT. The simultaneous measurements of GPS-TEC and NmF2 over Trivandrum and Waltair during the period 2000–2005 have been considered for the present study. It is found that there is a substantial increase in NmF2 and TEC before the onset of the storm over Waltair, while the increase is not present at Trivandrum. The origin of pre-storm enhancements in electron density still remains unresolved owing to several conditions in their potential sources and occurrence mechanisms. In the present study an attempt is made to identify the possible mechanisms responsible for such enhancements in electron density of the F-region.  相似文献   
122.
We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 – 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.  相似文献   
123.
We have developed a new approach towards a new database of the ionospheric parameter foF2. This parameter, being the frequency of the maximum of the ionospheric electronic density profile and its main modeller, is of great interest not only in atmospheric studies but also in the realm of radio propagation. The current databases, generated by CCIR (Committee Consultative for Ionospheric Radiowave propagation) and URSI (International Union of Radio Science), and used by the IRI (International Reference Ionosphere) model, are based on Fourier expansions and have been built in the 60s from the available ionosondes at that time. The main goal of this work is to upgrade the databases by using new available ionosonde data. To this end we used the IRI diurnal/spherical expansions to represent the foF2 variability, and computed its coefficients by means of a genetic algorithm (GA). In order to test the performance of the proposed methodology, we applied it to the South American region with data obtained by RAPEAS (Red Argentina para el Estudio de la Atmósfera Superior, i.e. Argentine Network for the Study of the Upper Atmosphere) during the years 1958–2009. The new GA coefficients provide a global better fit of the IRI model to the observed foF2 than the CCIR coefficients. Since the same formulae and the same number of coefficients were used, the overall integrity of IRI’s typical ionospheric feature representation was preserved. The best improvements with respect to CCIR are obtained at low solar activities, at large (in absolute value) modip latitudes, and at night-time. The new method is flexible in the sense that can be applied either globally or regionally. It is also very easy to recompute the coefficients when new data is available. The computation of a third set of coefficients corresponding to days of medium solar activity in order to avoid the interpolation between low and high activities is suggested. The same procedure as for foF2 can be perfomed to obtain the ionospheric parameter M(3000)F2.  相似文献   
124.
The astrophysical parameters have been estimated for two unstudied open star clusters Teutsch 10 and Teutsch 25 using the Two Micron All Sky Survey (2MASS) database. Radius is estimated as 4.5 arcmin for both clusters using radial density profiles. We have estimated proper motion values in both RA and DEC directions as 2.28±0.3 and -0.38±0.11?mas?yr?1 for Teutsch 10 and 0.48±0.3 and 3.35±0.16?mas?yr?1 for Teutsch 25 using PPMXL1 catalog. By estimating the stellar membership probabilities, we have identified 30 and 28 most likely members for Teutsch 10 and Teutsch 25 respectively. We have estimated the reddening as E(B-V)=0.96±0.3?mag for Teutsch 10 and 0.58±0.2?mag for Teutsch 25, while the corresponding distances are 2.4±0.2 and 1.9±0.1?kpc. Ages of 70±10?Myr for Teutsch 10 and 900±100?Myr for Teutsch 25 are estimated using the theoretical isochrones of metallicity Z?=?0.019. The mass function slopes are derived as 1.23±0.30 and 1.09±0.35 for Teutsch 10 and Teutsch 25 respectively. Estimated mass function slope for both the clusters are close to the Salpeter value (x=1.35) within the errors. Estimated values of dynamical relaxation time are found to be less than cluster’s age for these objects. This concludes that both objects are dynamically relaxed. The possible reason for relaxation may be due to dynamical evolution or imprint of star formation or both.  相似文献   
125.
A “Real-Time” plasma hazard assessment process was developed to support International Space Station (ISS) Program real-time decision-making providing solar array constraint relief information for Extravehicular Activities (EVAs) planning and operations. This process incorporates real-time ionospheric conditions, ISS solar arrays’ orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real-time data that is presently provided by the Floating Potential Measurement Unit (FPMU) which measures the ISS floating potential (FP), along with ionospheric electron number density (Ne) and electron temperature (Te), in order to determine the present ISS environment. Once the present environment conditions are correlated with International Reference Ionosphere (IRI) values, IRI is used to forecast what the environment could become in the event of a severe geomagnetic storm. If the FPMU should fail, the Space Environments team needs another source of data which is utilized to support a short-term forecast for EVAs. The IRI Real-Time Assimilative Mapping (IRTAM) model is an ionospheric model that uses real-time measurements from a large network of digisondes to produce foF2 and hmF2 global maps in 15?min cadence. The Boeing Space Environments team has used the IRI coefficients produced in IRTAM to calculate the Ne along the ISS orbital track. The results of the IRTAM model have been compared to FPMU measurements and show excellent agreement. IRTAM has been identified as the FPMU back-up system that will be used to support the ISS Program if the FPMU should fail.  相似文献   
126.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
127.
Adaptive beamforming is used to enhance the detection of target echoes received by high frequency (HF) surface wave (HFSW) over-the-horizon (OTH) radars in the presence of spatially structured interference. External interference from natural and man-made sources typically masks the entire range-Doppler search space and is characterized by a spatial covariance matrix that is time-varying or nonstationary over the coherent processing interval (CPI). Adaptive beamformers that update the spatial filtering weight vector within the CPI are likely to suppress such interference most effectively, but the intra-CPI antenna pattern fluctuations result in temporal decorrelation of the clutter which severely degrades subclutter visibility after Doppler processing. A robust adaptive beamformer that effectively suppresses spatially nonstationary interference without degrading subclutter visibility is proposed here. The proposed algorithm is computationally efficient and suitable for practical implementation. Its operational performance is evaluated using experimental data recorded by the Iluka HFSW OTH radar, located near Darwin in far north Australia.  相似文献   
128.
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites.  相似文献   
129.
The use of gray-scale intensities together with the edge information present in a forward-looking infrared (FLIR) image to obtain a precise and accurate segmentation of a target is presented. A model of FLIR images based on gray-scale and edge information is incorporated in a gradient relaxation technique which explicitly maximizes a criterion function based on the inconsistency and ambiguity of classification of pixels with respect to their neighbors. Four variations of the basic technique which provide automatic selection of thresholds to segment FLIR images are considered. These methods are compared, and several examples of segmentation of ship images are given  相似文献   
130.
A finite element statement of solving problems on stability of reinforced elliptic cylindrical shells taking into account momentness and nonlinearity of their subcritical stress strain state is presented. The explicit expressions for displacements of noncircular cylindrical shell elements as rigid bodies are determined by integrating the equations obtained by equating the components of linear strains to zero. These expressions were used to construct the form functions for an efficient quadrilateral finite element of natural curvature. An efficient numerical algorithm of nonlinear deformation and stability of shells was developed. The stability of reinforced elliptic cylindrical shells under combined loading by bending moment, transverse boundary force and internal pressure is analyzed. We also examine how the critical loads are affected by the strain nonlinearity and ellipticity of shell deformation at the subcritical stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号