全文获取类型
收费全文 | 3491篇 |
免费 | 22篇 |
国内免费 | 7篇 |
专业分类
航空 | 1779篇 |
航天技术 | 1196篇 |
综合类 | 12篇 |
航天 | 533篇 |
出版年
2021年 | 30篇 |
2019年 | 27篇 |
2018年 | 63篇 |
2017年 | 46篇 |
2016年 | 47篇 |
2015年 | 23篇 |
2014年 | 67篇 |
2013年 | 84篇 |
2012年 | 81篇 |
2011年 | 118篇 |
2010年 | 89篇 |
2009年 | 135篇 |
2008年 | 183篇 |
2007年 | 90篇 |
2006年 | 77篇 |
2005年 | 94篇 |
2004年 | 86篇 |
2003年 | 113篇 |
2002年 | 70篇 |
2001年 | 122篇 |
2000年 | 73篇 |
1999年 | 83篇 |
1998年 | 106篇 |
1997年 | 70篇 |
1996年 | 95篇 |
1995年 | 131篇 |
1994年 | 102篇 |
1993年 | 62篇 |
1992年 | 90篇 |
1991年 | 34篇 |
1990年 | 39篇 |
1989年 | 86篇 |
1988年 | 43篇 |
1987年 | 37篇 |
1986年 | 35篇 |
1985年 | 96篇 |
1984年 | 92篇 |
1983年 | 82篇 |
1982年 | 83篇 |
1981年 | 90篇 |
1980年 | 27篇 |
1979年 | 27篇 |
1978年 | 29篇 |
1977年 | 27篇 |
1976年 | 19篇 |
1975年 | 35篇 |
1974年 | 25篇 |
1973年 | 18篇 |
1972年 | 33篇 |
1971年 | 18篇 |
排序方式: 共有3520条查询结果,搜索用时 104 毫秒
341.
Jouny I. Garber E.D. Moses R.L. 《IEEE transactions on aerospace and electronic systems》1995,31(1):69-77
Radar target identification is performed using time-domain bispectral features. The classification performance is compared with the performance of other classifiers that use either the impulse response or frequency domain response of the unknown target. The classification algorithms developed here are based on the spectral or the bispectral energy of the received backscatter signal. Classification results are obtained using simulated radar returns derived from measured scattering data from real radar targets. The performance of classifiers in the presence of additive Gaussian (colored or white), exponential noise, and Weibull noise are considered, along with cases where the azimuth position of the target is unknown. Finally, the effect on classification performance of responses horn extraneous point scatterers is investigated 相似文献
342.
D. B. Reisenfeld D. S. Burnett R. H. Becker A. G. Grimberg V. S. Heber C. M. Hohenberg A. J. G. Jurewicz A. Meshik R. O. Pepin J. M. Raines D. J. Schlutter R. Wieler R. C. Wiens T. H. Zurbuchen 《Space Science Reviews》2007,130(1-4):79-86
Analysis of the Genesis samples is underway. Preliminary elemental abundances based on Genesis sample analyses are in good
agreement with in situ-measured elemental abundances made by ACE/SWICS during the Genesis collection period. Comparison of
these abundances with those of earlier solar cycles indicates that the solar wind composition is relatively stable between
cycles for a given type of flow. ACE/SWICS measurements for the Genesis collection period also show a continuum in compositional
variation as a function of velocity for the quasi-stationary flow that defies the simple binning of samples into their sources
of coronal hole (CH) and interstream (IS). 相似文献
343.
V. S. Heber R. C. Wiens D. B. Reisenfeld J. H. Allton H. Baur D. S. Burnett C. T. Olinger U. Wiechert R. Wieler 《Space Science Reviews》2007,130(1-4):309-316
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen
isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This
fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory
simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration
process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along
the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome
these disagreements. 相似文献
344.
Benjamin D.G. Chandran 《Space Science Reviews》2001,99(1-4):271-280
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k
k
, where k
and k
are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed. 相似文献
345.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite 总被引:3,自引:0,他引:3
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations. 相似文献
346.
Pulse chasing is a technique implemented by a bistatic or multistatic radar system that allows rapid and efficient search of a desired volume of space whereby the receiving antenna is made to follow or “chase” the transmitted pulse as it travels radially outward from the transmitter antenna. An expression for receiver antenna scan rate requirements is derived that corrects an error in the prior literature. The results give significantly reduced scan rates in the forward scatter region near the baseline showing that pulse chasing is more easily implemented using conventional analog beamformer phased array technology than was suggested by prior work 相似文献
347.
Clarkson I.V.L. Pollington A.D. 《IEEE transactions on aerospace and electronic systems》2007,43(2):645-650
The case is considered in which a frequency-agile receiver (FAR) for electronic support (ES) attempts to intercept radar emissions over a wide search bandwidth. It was recently shown [1,2] that a random strategy exists in which the expected intercept time can be made arbitrarily close to linear as a function of the scan period of the radar. Can a deterministic strategy be devised in which a similar linear relationship exists for the maximum intercept time? By applying the celebrated arithmetic results of van der Waerden [3] and Szemeredi [4], we show that no such strategy is possible. 相似文献
348.
There are a number of different error sources, such as multipath and thermal noise, which corrupt satellite navigation waveforms from their theoretical structure. However, even under ideal conditions the broadcast signals have some degree of deformation as a result of the practical individual hardware implementation. For the most demanding users of satellite navigation, such as aircraft navigation and landing systems, it is important to characterize the nominal signal structure in order to detect minimal variations resulting from hardware-based errors. Thus far such precorrelation Global Navigation Satellite System (GNSS) signal quality monitoring has been performed through high gain antennas, which allow for raising the GNSS spectrum above the thermal noise floor and observing the structure of the signal directly at the front end output. This paper describes a new approach to achieve such observability based on signal processing techniques, such as dithering and averaging, which leverage the repetitive nature of the GNSS signal. The paper presents how these techniques can drastically improve the signal-to-noise ratio (SNR) in postprocessing, allowing for the direct analysis of GNSS signals using traditional front end designs and conventional antennas. Results are predicted using the appropriate theory and validated using data collected from the Global Positioning System (GPS). 相似文献
349.
G E Bingham F B Salisbury W F Campbell J G Carman D L Bubenheim B Yendler V N Sytchev M A Berkovitch YuALevinskikh I G Podolsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):225-232
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.] 相似文献
350.
Input data of the system are two-dimensional images and one-dimensional distributions of total and polarized solar emission at 5.2 cm wavelength obtained with SSRT. Together with photoheliograms, magnetograms, Hα-filtergrams and characteristics of active regions received from other sources, they form the initial database. The first stage includes superimposing the images, identifying microwave sources with active regions, assigning NOAA numbers to the sources, and determining for each active region the heliolatitude, extent, and inclination angle of the group's axis to the equator. These data are used to calculate the boundaries of longitude zones for each active region. A next stage involves determining the brightness temperatures of microwave sources less than the polarization distribution, the degree of polarization, and microwave emission flux, as well as calculating the parameters of microwave sources. Each parameter is assigned its own value of the weight factor, and the sum of values is used to draw the conclusion about the flare occurrence probability in each active region and on the Sun in general. 相似文献