首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3964篇
  免费   122篇
  国内免费   85篇
航空   2097篇
航天技术   1300篇
综合类   73篇
航天   701篇
  2022年   33篇
  2021年   56篇
  2020年   38篇
  2019年   53篇
  2018年   79篇
  2017年   57篇
  2016年   64篇
  2015年   35篇
  2014年   90篇
  2013年   104篇
  2012年   96篇
  2011年   136篇
  2010年   119篇
  2009年   157篇
  2008年   213篇
  2007年   119篇
  2006年   105篇
  2005年   106篇
  2004年   98篇
  2003年   142篇
  2002年   105篇
  2001年   149篇
  2000年   88篇
  1999年   106篇
  1998年   121篇
  1997年   81篇
  1996年   100篇
  1995年   145篇
  1994年   115篇
  1993年   71篇
  1992年   98篇
  1991年   40篇
  1990年   45篇
  1989年   94篇
  1988年   49篇
  1987年   39篇
  1986年   37篇
  1985年   97篇
  1984年   94篇
  1983年   82篇
  1982年   82篇
  1981年   92篇
  1980年   28篇
  1979年   27篇
  1978年   31篇
  1977年   28篇
  1976年   19篇
  1975年   35篇
  1974年   25篇
  1972年   33篇
排序方式: 共有4171条查询结果,搜索用时 15 毫秒
91.
We present models of the extragalactic background light (EBL) based on several scenarios of galaxy formation and evolution. We have treated galaxy formation with the Press-Schecter approximation for both cold dark matter (CDM) and cold+hot dark matter (CHDM) models, representing a moderate (z f 3) and a late (z f 1) era of galaxy formation respectively. Galaxy evolution has been treated by considering a variety of stellar types, different initial mass functions and star formation histories, and with an accounting of dust absorption and emission. We find that the dominant factor influencing the EBL is the epoch of galaxy formation. A recently proposed method for observing the EBL utilizing the absorption of 0.1 to 10 TeV gamma-rays from active galactic nuclei (AGN) is shown to be capable of discriminating between different galaxy formation epochs. The one AGN viewed in TeV light, Mrk 421, does show some evidence for a cutoff above 3 TeV; based on the EBL models presented here, we suggest that this is due to extinction in the source. The large absorption predicted at energies > 200 GeV for sources at z > 0.5 indicates that observations of TeV gamma-ray bursts (GRB) would constrain or eliminate models in which the GRB sources lie at cosmological distances.Now at University of Chicago, Dept. of Astronomy & Astrophysics.  相似文献   
92.
This paper presents a review of theoretical and experimental results on stability and other unsteady properties of aircraft wakes. The basic mechanisms responsible for the propagation and the amplification of perturbation along vortices, namely the Kelvin waves and the cooperative instabilities, are first detailed. These two generic unsteady mechanisms are described by considering asymptotic linear stability analysis of model flows such as vortex filaments or Lamb–Oseen vortices. Extension of the linear analysis to more representative flows, using a biglobal stability approach, is also described. Experimental results obtained using LDV, hot wire and PIV in wind tunnels are presented and they are commented upon the light of theory.  相似文献   
93.
综合介绍了新型齿轮钢--16Cr3NiWMoVNbE钢的性能、热工艺及其在航空发动机上的应用.该钢具有淬透性高、晶粒长大倾向低等优异的综合性能,其使用温度可达350℃.该钢的研制成功,满足了我国新一代航空发动机对齿轮材料的需求.  相似文献   
94.
张昭文  常丽敏  洪金森  倪刚 《航空学报》1991,12(10):503-506
 <正> 1.引言 激光片光技术和流体中微粒的光散射效率逐步提高;从烟雾、水汽到激发诱导荧光使流动可视化程度不断开拓。许多研究工作需要通过观察切片照片获得对复杂流动整体结构的理解。因此,将系列二维切片照片重建成立体图象是十分有意义的。 近年来这方面比较典型的工作有Jimener的平面混合层和Agui and Hesselink的共轴喷流重建,分别在平面型和封闭柱面型的不同气流混合界面研究涡系的生成和发展。用涡迹切片重建的三维图象能清楚地显示涡的内部结构,对提供合理的流动假说和计算模型有重要意义。  相似文献   
95.
96.
“T”型尾翼飞机的深失速特性研究   总被引:1,自引:0,他引:1  
郑贤芬  刘昶 《飞行力学》1996,14(3):39-43
应用时间历程法讨论了“T”型尾翼飞机的深失速开环特性,分析了气动力矩特性和升降舵操纵规律对深失速改出特性的影响。建立了深失速闭环特性计算数学模型,分析了驾驶员数学模型参数变化对深失速特性的影响。研究结果表明,气动力矩特性,升降舵操纵规律和驾驶员模型参数的变化对“T”型尾翼飞机的深失速改出特性有显著的影响。  相似文献   
97.
A scheme is presented for the identification of naval vessels via active multiple-frequency radar interrogation. A major virtue of the described method is the use of a response waveform synthesized using amplitude data only. A prediction correlation using natural resonances associated with substructures on the vessels is applied to synthetically generated matched-filter response waveforms. The identification scheme is tested using measured model data for 8 vessels on a simulated sea surface. A correct identification probability of roughly 77 percent is obtained.  相似文献   
98.
The effective weighting function for weather radar is defined. This weighting function considers the effects of both the transmitted signal and the receiver filter. It is used to assign effective ranges to samples taken at prescribed times. For uniformly distributed targets it is shown that "signal"-to-noise ratio depends on the receiver filter, transmitted signal envelope, and receiver noise spectral density. Maximization of this signal-to-noise ratio when range resolution constraints are imposed is discussed, and a receiver design approach specifically adapted for Doppler weather radars is developed.  相似文献   
99.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
100.
Differential-game-based guidance law using target orientation observations   总被引:4,自引:0,他引:4  
Modern 4th generation air-to-air missiles are quite capable of dealing with today's battlefield needs. Advanced aerodynamics, highly efficient warheads and smart target acquisition systems combine to yield higher missile lethality than ever. However, in order to intercept highly maneuverable targets, such as future unmanned combat air vehicles (UCAV), or to achieve higher tracking precision for missiles equipped with smaller warheads, further improvement in the missile guidance system is still needed. A new concept is presented here for deriving improved differential-game-based guidance laws that make use of information about the target orientation, which is acquired via an imaging seeker. The underlying idea is that of using measurements of the target attitude as a leading indicator of target acceleration. Knowledge of target attitude reduces the reachable set of target acceleration, facilitating the computation of an improved estimate of the zero-effort miss (ZEM) distance. In consequence, missile guidance accuracy is significantly improved. The new concept is applied in a horizontal interception scenario, where it is assumed that the target maneuver direction, constituting a partial attitude information, can be extracted via processing target images, acquired by an imaging sensor. The derivation results in a new guidance law that explicitly exploits the direction of the target acceleration. The performance of the new guidance law is studied via a computer simulation, which demonstrates its superiority over existing state-of-the-art differential-game-based guidance laws. It is demonstrated that a significant decrease in the miss distance can be expected via the use of partial target orientation information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号