首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3489篇
  免费   23篇
  国内免费   7篇
航空   1779篇
航天技术   1195篇
综合类   12篇
航天   533篇
  2021年   30篇
  2019年   27篇
  2018年   63篇
  2017年   46篇
  2016年   47篇
  2015年   23篇
  2014年   67篇
  2013年   84篇
  2012年   81篇
  2011年   118篇
  2010年   89篇
  2009年   135篇
  2008年   183篇
  2007年   90篇
  2006年   77篇
  2005年   94篇
  2004年   86篇
  2003年   113篇
  2002年   70篇
  2001年   122篇
  2000年   73篇
  1999年   83篇
  1998年   106篇
  1997年   70篇
  1996年   95篇
  1995年   131篇
  1994年   102篇
  1993年   62篇
  1992年   90篇
  1991年   34篇
  1990年   39篇
  1989年   86篇
  1988年   43篇
  1987年   37篇
  1986年   35篇
  1985年   96篇
  1984年   92篇
  1983年   82篇
  1982年   82篇
  1981年   90篇
  1980年   27篇
  1979年   27篇
  1978年   29篇
  1977年   27篇
  1976年   19篇
  1975年   35篇
  1974年   25篇
  1973年   18篇
  1972年   33篇
  1971年   18篇
排序方式: 共有3519条查询结果,搜索用时 31 毫秒
271.
This report is an initial review of plans for a extensive program to survey and develop the Moon and to explore the planet Mars during the 21st century. It presents current typical plans for separate, associated and fully integrated programs of Lunar and Martian research, exploration and development, and concludes that detailed integrated plans must be prepared and be subject to formal criticism. Before responsible politicians approve a new thrust into space they will demand attractive, defensible, and detailed proposals that explain the WHEN, HOW and WHY of each stage of an expanded program of 21st century space research, development and exploration. In particular, the claims of daring, innovative, but untried systems must be compared with the known performance of existing technologies. The time has come to supersede the present haphazard approach to strategic space studies with a formal international structure to plan for future advanced space missions under the aegis of the world's national space agencies, and supported by governments and the corporate sector.  相似文献   
272.
Meshkov D  Rykova M 《Acta Astronautica》1995,36(8-12):719-726
The nature of the changes of resistance to infection seems to be very important. Our studies indicate that different functions of natural killers could be depressed after the spaceflight. The decrease of the percentage of the lymphocytes that can bind target cells lead to the lowering of the “active” NK level and this can be resulted in the depression of total NK activity and lowering of resistance to viral and tumor antigens. The investigation of natural killer cells in cosmonauts before and after short and long-term spaceflights also revealed the important role of spaceflight duration, stress and individual immune reactivity.  相似文献   
273.
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.  相似文献   
274.
The results of the satellite low-latitude and mid-latitude measurements of the disturbed plasma concentration, electron temperature, and quasi-stable electric field at heights of ~900 km after sunset are discussed. It is shown that the sharp fronts of changes in the electron temperature and plasma density observed in the experiment onboard the Intercosmos-Bulgaria-1300 satellite in the low-latitude (and equatorial) outer ionosphere can be related to damping of the oscillations of plasma electrons at local decreases of the plasma density (plasma “pits”) and formation of the vortex plasma structures at density and temperature gradients, which promotes conservation of ionosphere irregularities and makes the fronts of concentration variations steeper. Nonmonotonic variations in the plasma conductivity for the ionosphere currents in unstable plasma can be a cause of observed nonmonotonic disturbances of the vertical component of the “constant” electric field.  相似文献   
275.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   
276.
277.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
278.
The cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of \({\sim}25\) experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions.  相似文献   
279.
研究双馈型风力发电系统变流器控制参数对振荡模态的影响。在MATLAB/Simulink中建立系统详细的小信号模型,利用特征值分析和相关因子分析,对机网相互作用振荡模态进行辨识和分类。通过改变变流器控制参数,研究振荡模态的变化特性。最后,在MATLAB/Simulink上进行仿真验证。研究表明,优化变流器控制参数,可有效抑制振荡。  相似文献   
280.
钟兢军  康达  王永亮  刘子豪 《推进技术》2017,38(8):1857-1862
为能准确预估轴流压气机叶片在工作状态下的形状,基于流固耦合迭代策略,考虑离心力和气动力对叶片变形的作用,发展了一种适用于轴流压气机的叶型重构方法。在构型转化过程中,计入了叶片受力载荷随叶型变化的非线性效应以及叶片的变刚度特性。采用叶片变形后状态的受力载荷与刚度矩阵计算叶片节点位移,反复迭代修正热态叶片形状,最终获得满足精度要求的热态叶型数据。利用所提出的方法,对Stage 37的转子叶片进行了叶型重构,经20步迭代计算可获得最大残差小于10-4mm量级的热态叶型,通过与试验数据的对比分析,验证了重构算法的可靠性和工程实用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号