首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3491篇
  免费   22篇
  国内免费   7篇
航空   1779篇
航天技术   1196篇
综合类   12篇
航天   533篇
  2021年   30篇
  2019年   27篇
  2018年   63篇
  2017年   46篇
  2016年   47篇
  2015年   23篇
  2014年   67篇
  2013年   84篇
  2012年   81篇
  2011年   118篇
  2010年   89篇
  2009年   135篇
  2008年   183篇
  2007年   90篇
  2006年   77篇
  2005年   94篇
  2004年   86篇
  2003年   113篇
  2002年   70篇
  2001年   122篇
  2000年   73篇
  1999年   83篇
  1998年   106篇
  1997年   70篇
  1996年   95篇
  1995年   131篇
  1994年   102篇
  1993年   62篇
  1992年   90篇
  1991年   34篇
  1990年   39篇
  1989年   86篇
  1988年   43篇
  1987年   37篇
  1986年   35篇
  1985年   96篇
  1984年   92篇
  1983年   82篇
  1982年   83篇
  1981年   90篇
  1980年   27篇
  1979年   27篇
  1978年   29篇
  1977年   27篇
  1976年   19篇
  1975年   35篇
  1974年   25篇
  1973年   18篇
  1972年   33篇
  1971年   18篇
排序方式: 共有3520条查询结果,搜索用时 15 毫秒
11.
A cause of the instability of equilibrium of plasma ion composition is discussed and exemplified by the data on a burst of amplitudes of small-scale plasma irregularities in the plasmaspheric transition region during an evening launch of the Vertikal'-10 rocket. This burst is accompanied by a simultaneous decrease in the average plasma density at altitudes of 700–1100 km. Specific features of the observed events are compared to postsunset incoherent scatter radar observations of the ion diffusion flux density. It is demonstrated that the instability is caused by peculiarities of the protonosphere–ionosphere interaction associated with a sharp difference between thermal conditions of the ionospheric and protonospheric air shortly after sunset. The induced nonuniformity of postsunset cooling of the protonospheric–ionospheric plasma causes density irregularities in ion diffusion fluxes and generates local bunches of heavy ions, which are usually only a minor impurity to lighter ions. As a result, conditions are created that are favorable for the nondissipative accumulation of potential energy for the mutual opposition of two or more groups of ions with different masses and for the subsequent release of this energy by a threshold excitation of impurity-driven plasma instabilities.  相似文献   
12.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.  相似文献   
13.
14.
Launch Envelope Optimization of Virtual Sliding Target Guidance Scheme   总被引:1,自引:0,他引:1  
This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three-dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used.  相似文献   
15.
A novel thin line detection algorithm for use in low-altitude aerial vehicles is presented. This algorithm is able to detect thin obstacles such as cables, power lines, and wires. The system is intended to be used during urban search and rescue operations, capable of dealing with low-quality images, robust to image clutter, bad weather, and sensor artifacts. The detection process uses motion estimation at the pixel level, combined with edge detection, followed by a windowed Hough transform. The evidence of lines is tracked over time in the resulting parameter spaces using a dynamic line movement model. The algorithm's receiver operating characteristic curve (ROC) is shown, based on a multi-site dataset with 86 videos with 10160 wires spanning in 5576 frames.  相似文献   
16.
Magnetic effects are ubiquitous and known to be crucial in space physics and astrophysical media. We have now the opportunity to probe these effects in the outer heliosphere with the two spacecraft Voyager 1 and 2. Voyager 1 crossed, in December 2004, the termination shock and is now in the heliosheath. On August 30, 2007 Voyager 2 crossed the termination shock, providing us for the first time in-situ measurements of the subsonic solar wind in the heliosheath. With the recent in-situ data from Voyager 1 and 2 the numerical models are forced to confront their models with observational data. Our recent results indicate that magnetic effects, in particular the interstellar magnetic field, are very important in the interaction between the solar system and the interstellar medium. We summarize here our recent work that shows that the interstellar magnetic field affects the symmetry of the heliosphere that can be detected by different measurements. We combined radio emission and energetic particle streaming measurements from Voyager 1 and 2 with extensive state-of-the art 3D MHD modeling, to constrain the direction of the local interstellar magnetic field. The orientation derived is a plane ~60°–90° from the galactic plane. This indicates that the field orientation differs from that of a larger scale interstellar magnetic field, thought to parallel the galactic plane. Although it may take 7–12 years for Voyager 2 to leave the heliosheath and enter the pristine interstellar medium, the subsonic flows are immediately sensitive to the shape of the heliopause. The flows measured by Voyager 2 in the heliosheath indicate that the heliopause is being distorted by local interstellar magnetic field with the same orientation as derived previously. As a result of the interstellar magnetic field the solar system is asymmetric being pushed in the southern direction. The presence of hydrogen atoms tend to symmetrize the solutions. We show that with a strong interstellar magnetic field with our most current model that includes hydrogen atoms, the asymmetries are recovered. It remains a challenge for future works with a more complete model, to explain all the observed asymmetries by V1 and V2. We comment on these results and implications of other factors not included in our present model.  相似文献   
17.
Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter. The project had two major objectives: 1) to develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration, deep-space exploration; and 2) to explore the three icy moons of Jupiter - Callisto, Ganymede, and Europa - and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences. Early in project planning, it was determined that the development of the Prometheus nuclear-powered spaceship would be complex and require the intellectual knowledge residing at numerous organizations across the country. In addition, because of the complex nature of the project and the multiple partners, approaches beyond those successfully used to manage a typical JPL project would be needed. This describes the key experiences in managing Prometheus, which should prove useful for future projects of similar scope and magnitude.  相似文献   
18.
The problem considered in this paper is the investigation of the properties of a mass-meter, i.e. the device for determining the mass of cosmonaut's body under zero-gravity conditions. The estimates of accuracy of mass measurement by this device are given, and the results of measuring the masses of cosmonauts' bodies on the Salyut 5 and 6 orbital stations are presented.  相似文献   
19.
The Polar Balloon Atmospheric Composition Experiment (P-BACE) is a new generation of neutral gas mass spectrometer based on the time-of-flight principle. P-BACE is the scientific experiment on the Mars Environment Analog Platform (MEAP) flown successfully on a balloon mission in summer 2008. The MEAP mission was flown with a 334,000 m3 helium balloon in the stratosphere on a semicircular trajectory from northern Sweden around the North Pole to Canada using the summer northern hemispheric wind current. The atmospheric conditions at an atmospheric altitude of 35–40 km are remarkably similar to those on the surface of Mars and thus the balloon mission was an ideal testbed for our mass spectrometer P-BACE. Originally this instrument was designed for in situ measurements of the chemical composition of the Martian atmosphere.P-BACE has a unique mass range from 0 to 1000 amu/q with a mass resolution mm (FWHM) > 1000, and the dynamic range is at least six orders of magnitude. During this experiment, the acquisition of one mass spectrum is a sum of 65,535 single spectra, recorded in a time frame of 66 s.The balloon mission lasted 5 days and had successfully demonstrated the functionality of the P-BACE instrument during flight conditions. We had recorded more than 4500 mass spectra. With little modifications, P-BACE can be used on a planetary mission for Mars, but for example also for Venus or Mercury, if placed on a satellite.  相似文献   
20.
During 2004 and 2005 measurements of mesospheric/lower thermospheric (80–100 km) winds have been carried out in Germany using three different ground-based systems, namely a meteor radar (36.2 MHz) at the Collm Observatory (51.3°N, 13°E), a MF radar (3.18 MHz) at Juliusruh (54.6°N, 13.4°E) and the LF D1 measurements using a transmitter (177 kHz) at Zehlendorf near Berlin and receivers at Collm with the reflection point at 52.1°N, 13.2°E. This provides the possibility of comparing the results of different radar systems in nearly the same measuring volume. Meteor radar winds are generally stronger than the winds observed by MF and especially by LF radars. This difference is small near 80 km but increases with height. The difference between meteor radar and medium frequency radar winds is larger during winter than during summer, which might indicate an indirect influence of gravity waves on spaced antenna measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号