首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   0篇
航空   44篇
航天技术   21篇
综合类   2篇
航天   23篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2001年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
71.
The aurorae are the result of collisions with the atmosphere of energetic particles that have their origin in the solar wind, and reach the atmosphere after having undergone varying degrees of acceleration and redistribution within the Earth's magnetosphere. The global scale phenomenon represented by the aurorae therefore contains considerable information concerning the solar-terrestrial connection. For example, by correctly measuring specific auroral emissions, and with the aid of comprehensive models of the region, we can infer the total energy flux entering the atmosphere and the average energy of the particles causing these emissions. Furthermore, from these auroral emissions we can determine the ionospheric conductances that are part of the closing of the magnetospheric currents through the ionosphere, and from these we can in turn obtain the electric potentials and convective patterns that are an essential element to our understanding of the global magnetosphere-ionosphere-thermosphere-mesosphere. Simultaneously acquired images of the auroral oval and polar cap not only yield the temporal and spatial morphology from which we can infer activity indices, but in conjunction with simultaneous measurements made on spacecraft at other locations within the magnetosphere, allow us to map the various parts of the oval back to their source regions in the magnetosphere. This paper describes the Ultraviolet Imager for the Global Geospace Sciences portion of the International Solar-Terrestrial Physics program. The instrument operates in the far ultraviolet (FUV) and is capable of imaging the auroral oval regardless of whether it is sunlit or in darkness. The instrument has an 8° circular field of view and is located on a despun platform which permits simultaneous imaging of the entire oval for at least 9 hours of every 18 hour orbit. The three mirror, unobscured aperture, optical system (f/2.9) provides excellent imaging over this full field of view, yielding a per pixel angular resolution of 0.6 milliradians. Its FUV filters have been designed to allow accurate spectral separation of the features of interest, thus allowing quantitative interpretation of the images to provide the parameters mentioned above. The system has been designed to provide ten orders of magnitude blocking against longer wavelength (primarily visible) scattered sunlight, thus allowing the first imaging of key, spectrally resolved, FUV diagnostic features in the fully sunlit midday aurorae. The intensified-CCD detector has a nominal frame rate of 37 s, and the fast optical system has a noise equivalent signal within one frame of 10R. The instantaneous dynamic range is >1000 and can be positioned within an overall gain range of 104, allowing measurement of both the very weak polar cap emissions and the very bright aurora. The optical surfaces have been designed to be sufficiently smooth to permit this dynamic range to be utilized without the scattering of light from bright features into the weaker features. Finally, the data product can only be as good as the degree to which the instrument performance is characterized and calibrated. In the VUV, calibration of an an imager intended for quantitative studies is a task requiring some pioneering methods, but it is now possible to calibrate such an instrument over its focal plane to an accuracy of ±10%. In summary, very recent advances in optical, filter and detector technology have been exploited to produce an auroral imager to meet the ISTP objectives.  相似文献   
72.
In October of 2005, the European Space Agency (ESA) and Alcatel Alenia Spazio released a "call to academia for innovative concepts and technologies for lunar exploration." In recent years, interest in lunar exploration has increased in numerous space programs around the globe, and the purpose of our study, in response to the ESA call, was to draw on the expertise of researchers and university students to examine science questions and technologies that could support human astrobiology activity on the Moon. In this mini review, we discuss astrobiology science questions of importance for a human presence on the surface of the Moon and we provide a summary of key instrumentation requirements to support a lunar astrobiology laboratory.  相似文献   
73.
The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7°×7° in three 90° sectors and approximately 3.5°×3.5° in the fourth 90° sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7°×7°) quadrants of the collimator so that the interstellar neutrals are detected with 3.5°×3.5° angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission.  相似文献   
74.
he burst alert telescope (BAT) is one of three instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution, a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor.  相似文献   
75.
A prototype CubeSat module to deploy a gossamer aerobrake, using strain stored in tape-springs, at end-of-life is described. A novel hub geometry to reduce bending shock at end-of-deployment while simultaneously permitting radial, as opposed to tangential, deployment is proposed. The rpm of the hub is measured under various deployment conditions to verify that the system offers highly-repeatable performance, while high-speed photography is used to characterise the behaviour of the tape-spring during unspooling and contrast it to the behaviour of a traditional tangential-deployment system. Secondly the folding pattern of the membrane, which takes advantage of the symmetrical deployment offered by the petal hub, is developed and the unfolding mechanism is verified by numerical and experimental analysis. Finally, the release of the stored strain is considered and a novel burn-though device is designed and prototyped to meet this requirement.  相似文献   
76.
The aerodynamic situation of a satellite-on-a-chip operating in low Earth orbit bears some resemblance to a classical Crookes radiometer. The large area-to-mass ratio characteristic of a SpaceChip means that very small surface-dependent forces produce non-negligible accelerations that can significantly alter its orbit. When the temperature of a SpaceChip changes, the drag force can be changed: if the temperature increases, the drag increases (and vice versa). Analytical expressions available in the literature that describe the change in drag coefficient with orbit altitude and SpaceChip temperature compare well with our direct simulation Monte Carlo results presented here. It is demonstrated that modifying the temperature of a SpaceChip could be used for relative orbit control of individual SpaceChips in a swarm, with a maximum change in position per orbit of 50 m being achievable at 600 km altitude.  相似文献   
77.
The Origins, Spectral-Interpretation, Resource-Identification, Security and Regolith-Explorer (OSIRIS-REx) spacecraft supports all aspects of the mission science objectives, from extensive remote sensing at the asteroid Bennu, to sample collection and return to Earth. In general, the success of planetary missions requires the collection, return, and analysis of data, which in turn depends on the successful operation of instruments and the host spacecraft. In the case of OSIRIS-REx, a sample-return mission, the spacecraft must also support the acquisition, safe stowage, and return of the sample. The target asteroid is Bennu, a B-class near-Earth asteroid roughly 500 m diameter. The Lockheed Martin-designed and developed OSIRIS-REx spacecraft draws significant heritage from previous missions and features the Touch-and-Go-Sample-Acquisition-Mechanism, or TAGSAM, to collect sample from the surface of Bennu. Lockheed Martin developed TAGSAM as a novel, simple way to collect samples on planetary bodies. During short contact with the asteroid surface, TAGSAM releases curation-grade nitrogen gas, mobilizing the surface regolith into a collection chamber. The contact surface of TAGSAM includes “contact pads”, which are present to collect surface grains that have been subject to space weathering. Extensive 1-g laboratory testing, “reduced-gravity” testing (via parabolic flights on an airplane), and analysis demonstrate that TAGSAM will collect asteroid material in nominal conditions, and a variety of off-nominal conditions, such as the presence of large obstacles under the TAGSAM sampling head, or failure in the sampling gas firing. TAGSAM, and the spacecraft support of the instruments, are central to the success of the mission.  相似文献   
78.
Tetrahedral Robotics for Space Exploration   总被引:2,自引:0,他引:2  
A reconfigurable space filling robotic architecture has a wide range of possible applications. One of the more intriguing possibilities is mobility in very irregular and otherwise impassable terrain. NASA Goddard Space Flight Center is developing the third generation of its addressable reconfigurable technology (ART) tetrahedral robotics architecture. An ART-based variable geometry truss consisting of 12 tetrahedral elements made from 26 smart struts on a wireless network has been developed. The primary goal of this development is the demonstration of a new kind of robotic mobility that can provide access and articulation that complement existing capabilities. An initial set of gaits and other behaviors are being tested, and accommodations for payloads such as sensor and telemetry packages are being studied. Herein, we describe our experience with the ART tetrahedral robotics architecture and the improvements implemented in the third generation of this technology. Applications of these robots to space exploration and the tradeoffs involved with this architecture will be discussed.  相似文献   
79.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号