排序方式: 共有33条查询结果,搜索用时 15 毫秒
31.
R. Bewick J.P. Sanchez C.R. McInnes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This paper presents a novel method of space-based geoengineering which uses the mass of a captured near Earth asteroid to gravitationally anchor a cloud of unprocessed dust in the vicinity of the L1 position to reduce the level of solar insolation at Earth. It has subsequently been shown that a cloud contained within the zero-velocity curve of the largest near Earth asteroid, Ganymed, can lead to an insolation reduction of 6.58% on Earth, which is significantly larger than the 1.7% required to offset a 2 °C increase in mean global temperature. The masses of the next largest near Earth asteroids are found to be too small to achieve the required level of insolation reduction, however, they are significant enough to be used as part of a portfolio of geoengineering schemes. 相似文献
32.
Craig White Camilla Colombo Thomas J. Scanlon Colin R. McInnes Jason M. Reese 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The aerodynamic situation of a satellite-on-a-chip operating in low Earth orbit bears some resemblance to a classical Crookes radiometer. The large area-to-mass ratio characteristic of a SpaceChip means that very small surface-dependent forces produce non-negligible accelerations that can significantly alter its orbit. When the temperature of a SpaceChip changes, the drag force can be changed: if the temperature increases, the drag increases (and vice versa). Analytical expressions available in the literature that describe the change in drag coefficient with orbit altitude and SpaceChip temperature compare well with our direct simulation Monte Carlo results presented here. It is demonstrated that modifying the temperature of a SpaceChip could be used for relative orbit control of individual SpaceChips in a swarm, with a maximum change in position per orbit of 50 m being achievable at 600 km altitude. 相似文献
33.
Malcolm Macdonald Colin MInnes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next. 相似文献