首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
航空   15篇
航天技术   14篇
航天   4篇
  2021年   5篇
  2018年   6篇
  2017年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2009年   2篇
  2007年   1篇
  2002年   1篇
  1998年   1篇
  1990年   2篇
  1986年   1篇
  1977年   3篇
  1970年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
31.
This paper presents a novel method of space-based geoengineering which uses the mass of a captured near Earth asteroid to gravitationally anchor a cloud of unprocessed dust in the vicinity of the L1L1 position to reduce the level of solar insolation at Earth. It has subsequently been shown that a cloud contained within the zero-velocity curve of the largest near Earth asteroid, Ganymed, can lead to an insolation reduction of 6.58% on Earth, which is significantly larger than the 1.7% required to offset a 2 °C increase in mean global temperature. The masses of the next largest near Earth asteroids are found to be too small to achieve the required level of insolation reduction, however, they are significant enough to be used as part of a portfolio of geoengineering schemes.  相似文献   
32.
    
The aerodynamic situation of a satellite-on-a-chip operating in low Earth orbit bears some resemblance to a classical Crookes radiometer. The large area-to-mass ratio characteristic of a SpaceChip means that very small surface-dependent forces produce non-negligible accelerations that can significantly alter its orbit. When the temperature of a SpaceChip changes, the drag force can be changed: if the temperature increases, the drag increases (and vice versa). Analytical expressions available in the literature that describe the change in drag coefficient with orbit altitude and SpaceChip temperature compare well with our direct simulation Monte Carlo results presented here. It is demonstrated that modifying the temperature of a SpaceChip could be used for relative orbit control of individual SpaceChips in a swarm, with a maximum change in position per orbit of 50 m being achievable at 600 km altitude.  相似文献   
33.
Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号