全文获取类型
收费全文 | 247篇 |
免费 | 0篇 |
国内免费 | 3篇 |
专业分类
航空 | 152篇 |
航天技术 | 48篇 |
综合类 | 2篇 |
航天 | 48篇 |
出版年
2022年 | 1篇 |
2021年 | 6篇 |
2019年 | 3篇 |
2018年 | 33篇 |
2017年 | 18篇 |
2016年 | 1篇 |
2015年 | 7篇 |
2014年 | 3篇 |
2013年 | 11篇 |
2012年 | 7篇 |
2011年 | 11篇 |
2010年 | 11篇 |
2009年 | 12篇 |
2008年 | 7篇 |
2007年 | 14篇 |
2006年 | 4篇 |
2005年 | 11篇 |
2004年 | 7篇 |
2003年 | 4篇 |
2002年 | 3篇 |
2001年 | 7篇 |
2000年 | 4篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 3篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1986年 | 2篇 |
1985年 | 9篇 |
1984年 | 7篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 9篇 |
1978年 | 1篇 |
1970年 | 1篇 |
1967年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有250条查询结果,搜索用时 15 毫秒
231.
Tim Van Hoolst Frank Sohl Igor Holin Olivier Verhoeven Véronique Dehant Tilman Spohn 《Space Science Reviews》2007,132(2-4):203-227
This review addresses the deep interior structure of Mercury. Mercury is thought to consist of similar chemical reservoirs (core, mantle, crust) as the other terrestrial planets, but with a relatively much larger core. Constraints on Mercury’s composition and internal structure are reviewed, and possible interior models are described. Large advances in our knowledge of Mercury’s interior are not only expected from imaging of characteristic surface features but particularly from geodetic observations of the gravity field, the rotation, and the tides of Mercury. The low-degree gravity field of Mercury gives information on the differences of the principal moments of inertia, which are a measure of the mass concentration toward the center of the planet. Mercury’s unique rotation presents several clues to the deep interior. From observations of the mean obliquity of Mercury and the low-degree gravity data, the moments of inertia can be obtained, and deviations from the mean rotation speed (librations) offer an exciting possibility to determine the moment of inertia of the mantle. Due to its proximity to the Sun, Mercury has the largest tides of the Solar System planets. Since tides are sensitive to the existence and location of liquid layers, tidal observations are ideally suited to study the physical state and size of the core of Mercury. 相似文献
232.
M. Golombek M. Grott G. Kargl J. Andrade J. Marshall N. Warner N. A. Teanby V. Ansan E. Hauber J. Voigt R. Lichtenheldt B. Knapmeyer-Endrun I. J. Daubar D. Kipp N. Muller P. Lognonné C. Schmelzbach D. Banfield A. Trebi-Ollennu J. Maki S. Kedar D. Mimoun N. Murdoch S. Piqueux P. Delage W. T. Pike C. Charalambous R. Lorenz L. Fayon A. Lucas S. Rodriguez P. Morgan A. Spiga M. Panning T. Spohn S. Smrekar T. Gudkova R. Garcia D. Giardini U. Christensen T. Nicollier D. Sollberger J. Robertsson K. Ali B. Kenda W. B. Banerdt 《Space Science Reviews》2018,214(5):84
Although not the prime focus of the InSight mission, the near-surface geology and physical properties investigations provide critical information for both placing the instruments (seismometer and heat flow probe with mole) on the surface and for understanding the nature of the shallow subsurface and its effect on recorded seismic waves. Two color cameras on the lander will obtain multiple stereo images of the surface and its interaction with the spacecraft. Images will be used to identify the geologic materials and features present, quantify their areal coverage, help determine the basic geologic evolution of the area, and provide ground truth for orbital remote sensing data. A radiometer will measure the hourly temperature of the surface in two spots, which will determine the thermal inertia of the surface materials present and their particle size and/or cohesion. Continuous measurements of wind speed and direction offer a unique opportunity to correlate dust devils and high winds with eolian changes imaged at the surface and to determine the threshold friction wind stress for grain motion on Mars. During the first two weeks after landing, these investigations will support the selection of instrument placement locations that are relatively smooth, flat, free of small rocks and load bearing. Soil mechanics parameters and elastic properties of near surface materials will be determined from mole penetration and thermal conductivity measurements from the surface to 3–5 m depth, the measurement of seismic waves during mole hammering, passive monitoring of seismic waves, and experiments with the arm and scoop of the lander (indentations, scraping and trenching). These investigations will determine and test the presence and mechanical properties of the expected 3–17 m thick fragmented regolith (and underlying fractured material) built up by impact and eolian processes on top of Hesperian lava flows and determine its seismic properties for the seismic investigation of Mars’ interior. 相似文献
233.
Naomi Murdoch Balthasar Kenda Taichi Kawamura Aymeric Spiga Philippe Lognonné David Mimoun William B. Banerdt 《Space Science Reviews》2017,211(1-4):457-483
The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells’ theory (Sorrells, Geophys. J. Int. 26:71–82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14–16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically \(\sim 2 \mbox{--} 40~\mbox{nm}/\mbox{s}^{2}\) in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be \(\sim 0.1\mbox{--}6~\mbox{nm}/\mbox{s}^{2}\) in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects.We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer.In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of \(\sim 5\) in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission. 相似文献
234.
A. Pedersen N. Cornilleau-Wehrlin B. De la Porte A. Roux A. Bouabdellah P. M. E. Décréau F. Lefeuvre F. X. Sène D. Gurnett R. Huff G. Gustafsson G. Holmgren L. Woolliscroft H. ST. C. Alleyne J. A. Thompson P. H. N. Davies 《Space Science Reviews》1997,79(1-2):93-106
In order to get the maximum scientific return from available resources, the wave experimenters on Cluster established the Wave Experiment Consortium (WEC). The WEC's scientific objectives are described, together with its capability to achieve them in the course of the mission. The five experiments and the interfaces between them are shown in a general block diagram (Figure 1). WEC has organised technical coordination for experiment pre-delivery tests and spacecraft integration, and has also established associated working groups for data analysis and operations in orbit. All science operations aspects of WEC have been worked out in meetings with wide participation of investigators from the five WEC teams. 相似文献
235.
Agnès Levy Bruno Christophe Gilles Métris Philippe Bério Jean-Michel Courty Serge Reynaud 《Space Science Reviews》2010,151(1-3):105-121
The Pioneer anomaly refers to the difference between the computed trajectories of the Pioneer 10 and 11 spacecrafts and their actual trajectories as observed through Doppler tracking. This difference has been described by the Jet Propulsion Laboratory (JPL) as a constant anomalous acceleration. In order to perform an independent analysis, specific trajectography software, named ODYSSEY, has been developed. The paper will focus on the models implemented in this software and on the results obtained. The existence of a constant anomalous acceleration is confirmed with properties similar to those reported by JPL. Time dependent components of the anomaly are also found and discussed. 相似文献
236.
Lucile Fayon Brigitte Knapmeyer-Endrun Philippe Lognonné Marco Bierwirth Aron Kramer Pierre Delage Foivos Karakostas Sharon Kedar Naomi Murdoch Raphael F. Garcia Nicolas Verdier Sylvain Tillier William T. Pike Ken Hurst Cédric Schmelzbach William B. Banerdt 《Space Science Reviews》2018,214(8):119
Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing. 相似文献
237.
Philippe L. Lamy Imre Toth Björn J. R. Davidsson Olivier Groussin Pedro Gutiérrez Laurent Jorda Mikko Kaasalainen Stephen C. Lowry 《Space Science Reviews》2007,128(1-4):23-66
In 2003, comet 67P/Churyumov–Gerasimenko was selected as the new target of the Rosetta mission as the most suitable alternative
to the original target, comet 46P/Wirtanen, on the basis of orbital considerations even though very little was known about
the physical properties of its nucleus. In a matter of a few years and based on highly focused observational campaigns as
well as thorough theoretical investigations, a detailed portrait of this nucleus has been established that will serve as a
baseline for planning the Rosetta operations and observations. In this review article, we present a novel method to determine
the size and shape of a cometary nucleus: several visible light curves were inverted to produce a size–scale free three–dimensional
shape, the size scaling being imposed by a thermal light curve. The procedure converges to two solutions which are only marginally
different. The nucleus of comet 67P/Churyumov–Gerasimenko emerges as an irregular body with an effective radius (that of the
sphere having the same volume) = 1.72 km and moderate axial ratios a/b = 1.26 and a/c = 1.5 to 1.6. The overall dimensions
measured along the principal axis for the two solutions are 4.49–4.75 km, 3.54–3.77 km and 2.94–2.92 km. The nucleus is found
to be in principal axis rotation with a period = 12.4–12.7 h. Merging all observational constraints allow us to specify two
regions for the direction of the rotational axis of the nucleus: RA = 220°+50°
−30° and Dec = −70° ± 10° (retrograde rotation) or RA = 40°+50°
-30° and Dec = +70°± 10° (prograde), the better convergence of the various determinations presently favoring the first solution. The phase function,
although constrained by only two data points, exhibits a strong opposition effect rather similar to that of comet 9P/Tempel
1. The definition of the disk–integrated albedo of an irregular body having a strong opposition effect raises problems, and
the various alternatives led to a R-band geometric albedo in the range 0.045–0.060, consistent with our present knowledge of cometary nuclei. The active fraction
is low, not exceeding ~ 7% at perihelion, and is probably limited to one or two active regions subjected to a strong seasonal
effect, a picture coherent with the asymmetric behaviour of the coma. Our slightly downward revision of the size of the nucleus
of comet 67P/Churyumov-Gerasimenko resulting from the present analysis (with the correlative increase of the albedo compared
to the originally assumed value of 0.04), and our best estimate of the bulk density of 370 kg m−3, lead to a mass of ~ 8 × 1012 kg which should ease the landing of Philae and insure the overall success of the Rosetta mission. 相似文献
238.
We present the results of a study aimed at determining the 12C/13C ratio in two samples of planetary nebulae (PNe) by means of mm-wave observations of 12CO and 13CO. The first group includes six PNe which have been observed in the 3He+ hyperfine transition; the other group consists of 23 nebulae with rich molecular envelopes. We have determined the isotopic ratio in 14 objects and the results indicate a range of values between 9 and 23. In particular, three PNe have ratios well below the value predicted by standard evolutionary models ( 20), indicating that some extra-mixing process has occurred in these stars. We briefly discuss the implications of our results for standard and nonstandard stellar nucleosynthesis. 相似文献
239.
Parro V Fernández-Remolar D Rodríguez-Manfredi JA Cruz-Gil P Rivas LA Ruiz-Bermejo M Moreno-Paz M García-Villadangos M Gómez-Ortiz D Blanco-López Y Menor-Salván C Prieto-Ballesteros O Gómez-Elvira J 《Astrobiology》2011,11(1):29-44
The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5?g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets. 相似文献
240.
Michel Denis Célia Mores Doriane Gras Valérie Gyselinck Marie-Paule Daniel 《Spatial Cognition & Computation》2014,14(4):284-305
We tested the hypothesis that a route's memorability is dependent on the frequency with which people are exposed to visual landmarks. Undergraduates learned either a route through an urban area lacking visually salient features, or a route in a neighborhood with many shops and urban objects. They were then asked to recall the learned route in the form of route directions and sketch maps. The results showed higher recall performance for the richer environment. When presented with photographs depicting scenes along the route, participants exposed to the richer environment had higher recognition scores and shorter response times than the others. The data confirm the functional role of landmarks in route memory and wayfinding. 相似文献