首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   0篇
  国内免费   3篇
航空   152篇
航天技术   48篇
综合类   1篇
航天   48篇
  2022年   1篇
  2021年   5篇
  2019年   3篇
  2018年   33篇
  2017年   18篇
  2016年   1篇
  2015年   7篇
  2014年   3篇
  2013年   11篇
  2012年   7篇
  2011年   11篇
  2010年   11篇
  2009年   12篇
  2008年   7篇
  2007年   14篇
  2006年   4篇
  2005年   11篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1986年   2篇
  1985年   9篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   9篇
  1978年   1篇
  1970年   1篇
  1967年   1篇
  1963年   1篇
排序方式: 共有249条查询结果,搜索用时 218 毫秒
221.
Impact analysis of the transponder time delay on radio-tracking observables   总被引:1,自引:0,他引:1  
Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly used. In this paper we analyze the impact of the transponder delay, i.e. the processing time between reception and re-emission of a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth flybys, the NASA GRAIL and the ESA BepiColombo missions.  相似文献   
222.
Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing.  相似文献   
223.
Although not the prime focus of the InSight mission, the near-surface geology and physical properties investigations provide critical information for both placing the instruments (seismometer and heat flow probe with mole) on the surface and for understanding the nature of the shallow subsurface and its effect on recorded seismic waves. Two color cameras on the lander will obtain multiple stereo images of the surface and its interaction with the spacecraft. Images will be used to identify the geologic materials and features present, quantify their areal coverage, help determine the basic geologic evolution of the area, and provide ground truth for orbital remote sensing data. A radiometer will measure the hourly temperature of the surface in two spots, which will determine the thermal inertia of the surface materials present and their particle size and/or cohesion. Continuous measurements of wind speed and direction offer a unique opportunity to correlate dust devils and high winds with eolian changes imaged at the surface and to determine the threshold friction wind stress for grain motion on Mars. During the first two weeks after landing, these investigations will support the selection of instrument placement locations that are relatively smooth, flat, free of small rocks and load bearing. Soil mechanics parameters and elastic properties of near surface materials will be determined from mole penetration and thermal conductivity measurements from the surface to 3–5 m depth, the measurement of seismic waves during mole hammering, passive monitoring of seismic waves, and experiments with the arm and scoop of the lander (indentations, scraping and trenching). These investigations will determine and test the presence and mechanical properties of the expected 3–17 m thick fragmented regolith (and underlying fractured material) built up by impact and eolian processes on top of Hesperian lava flows and determine its seismic properties for the seismic investigation of Mars’ interior.  相似文献   
224.
2001年9月15日Cluster卫星对电流片的观测研究   总被引:1,自引:0,他引:1  
2001年9月15日0430-0515 UT期间,Cluster卫星多次穿越磁尾电流片.由FGM、CIS等仪器获得了电流片磁场,粒子速度等数据变化情况,并得到了磁尾高速流的两次明显反转.本文采用GSM坐标系.利用求磁场空间梯度张量的方法获得了越尾电流,其电流密度的峰值为28nA/m2.并对电流片在垂直方向上的摆动和在晨昏方向的波动现象进行了分析.数据显示此时电流片为薄电流片并有一个变薄的趋势,其厚度大约为0.2-0.3 Re.磁场重联时地向流与尾向流均超过了1000 km/s,并测得了电流片的法线方向和运动速度,从而得到了磁尾电流片的结构和运动情况.   相似文献   
225.
In our search for life on other planets over the past decades, we have come to understand that the solid terrestrial planets provide much more than merely a substrate on which life may develop. Large-scale exchange of heat and volatile species between planetary interiors and hydrospheres/atmospheres, as well as the presence of a magnetic field, are important factors contributing to the habitability of a planet. This chapter reviews these processes, their mutual interactions, and the role life plays in regulating or modulating them.  相似文献   
226.
In 2003, comet 67P/Churyumov–Gerasimenko was selected as the new target of the Rosetta mission as the most suitable alternative to the original target, comet 46P/Wirtanen, on the basis of orbital considerations even though very little was known about the physical properties of its nucleus. In a matter of a few years and based on highly focused observational campaigns as well as thorough theoretical investigations, a detailed portrait of this nucleus has been established that will serve as a baseline for planning the Rosetta operations and observations. In this review article, we present a novel method to determine the size and shape of a cometary nucleus: several visible light curves were inverted to produce a size–scale free three–dimensional shape, the size scaling being imposed by a thermal light curve. The procedure converges to two solutions which are only marginally different. The nucleus of comet 67P/Churyumov–Gerasimenko emerges as an irregular body with an effective radius (that of the sphere having the same volume) = 1.72 km and moderate axial ratios a/b = 1.26 and a/c = 1.5 to 1.6. The overall dimensions measured along the principal axis for the two solutions are 4.49–4.75 km, 3.54–3.77 km and 2.94–2.92 km. The nucleus is found to be in principal axis rotation with a period = 12.4–12.7 h. Merging all observational constraints allow us to specify two regions for the direction of the rotational axis of the nucleus: RA = 220°+50° −30° and Dec = −70° ± 10° (retrograde rotation) or RA = 40°+50° -30° and Dec = +70°± 10° (prograde), the better convergence of the various determinations presently favoring the first solution. The phase function, although constrained by only two data points, exhibits a strong opposition effect rather similar to that of comet 9P/Tempel 1. The definition of the disk–integrated albedo of an irregular body having a strong opposition effect raises problems, and the various alternatives led to a R-band geometric albedo in the range 0.045–0.060, consistent with our present knowledge of cometary nuclei. The active fraction is low, not exceeding ~ 7% at perihelion, and is probably limited to one or two active regions subjected to a strong seasonal effect, a picture coherent with the asymmetric behaviour of the coma. Our slightly downward revision of the size of the nucleus of comet 67P/Churyumov-Gerasimenko resulting from the present analysis (with the correlative increase of the albedo compared to the originally assumed value of 0.04), and our best estimate of the bulk density of 370 kg m−3, lead to a mass of ~ 8 × 1012 kg which should ease the landing of Philae and insure the overall success of the Rosetta mission.  相似文献   
227.
We report on the development of a passive sorption pump, capable of maintaining high-vacuum conditions in the InSight seismometer throughout the duration of any extended mission. The adsorber material is a novel zeolite-loaded aerogel (ZLA) composite, which consists of fine zeolite particles homogeneously dispersed throughout a porous silica network. The outgassing species within the SEIS evacuated container were analyzed and the outgassing rate was estimated by different methods. The results were used to optimize the ZLA composition to adsorb the outgassing constituents, dominated by water, while minimizing the SEIS bakeout constraints. The InSight ZLA composite additionally facilitated substantial CO2 adsorption capabilities for risk mitigation against external leaks in Mars atmosphere. To comply with the stringent particle requirements, the ZLA getters were packaged in sealed containers, open to the SEIS interior through \(1~\upmu\mbox{m}\)-size pore filters. Results from experimental validation and verification tests of the packaged getters are presented. The pressure forecast based on these data, corroborated by rudimentary in situ pressure measurements, infer SEIS operational pressures not exceeding \(10^{-5}~\mbox{mbar}\) throughout the mission.  相似文献   
228.
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be \(\geq3\mbox{--}5~\mbox{m}\) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.  相似文献   
229.
A stable, observable liquid-gas interface was realized in an experimental cell (3 × 2 × 1 cm) under microgravity conditions. The liquid used was an aqueous 6.24 10?3 molal solution of n-heptanol. A temperature gradient, established at the interface, resulted in the build-up of a Marangoni convection cell with the liquid flowing in an unusual direction (i.e. at the surface the liquid flowed from the cold to the hot side).The same experiment on Earth gives rise to a Marangoni cell superimposed on buoyancy cells. The Marangoni and the buoyancy cells then turn in opposite directions.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号