首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
  国内免费   3篇
航空   32篇
航天技术   23篇
航天   32篇
  2021年   4篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   4篇
  2010年   7篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
51.
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.  相似文献   
52.
The Third Solar Wind Conference was convened from March 25 to 29,1974 at the Asilomar Conference Grounds, Pacific Grove, California. The conference consisted of nine sessions dealing with solar abundances; the history and evolution of the solar wind; the structure and dynamics of the solar wind; the structure and dynamics of the solar corona; macroscopic and microscopic properties of the solar wind; cosmic rays as a probe of the solar wind; spatial gradients; stellar winds; and interactions with objects in the solar wind. This paper summarizes the invited and contributed talks presented at the conference.Institute of Geophysics and Planetary Physics Publication Number 1354-51.  相似文献   
53.
54.
Abstract

This research uses a novel integration paradigm to investigate whether target locations read in from long-term memory (LTM) differ from perceptually encoded inputs in spatial working-memory (SWM) with respect to systematic spatial error and/or noise, and whether SWM can simultaneously encompass both of these sources. Our results provide evidence for a composite representation of space in SWM derived from both perception and LTM, albeit with a loss in spatial precision of locations retrieved from LTM. More generally, the data support the concept of a spatial image in working memory and extend its potential sources to representations retrieved from LTM.  相似文献   
55.
The New Horizons Spacecraft   总被引:1,自引:0,他引:1  
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.  相似文献   
56.
Recent developments in NASA’s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light-ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.  相似文献   
57.
In this paper we present a conceptual design of a spaceborne instrument for the in situ production of rock thin sections on planetary surfaces. The in situ Automated Rock Thin Section Instrument (IS-ARTS) conceptual design demonstrates that the in situ production of thin sections on a planetary body is a plausible new instrument capability for future planetary exploration. Thin section analysis would reduce much ambiguity in the geological history of a sampled site that is present with instruments currently flown. The technical challenge of producing a thin section device compatible with the spacecraft environment is formidable and has been thought too technically difficult to be practical. Terrestrial thin section preparation requires a skilled petrographist, several preparation instruments that individually exceed typical spacecraft mass and power limits, and consumable materials that are not easily compatible with spaceflight. In two companion papers we present research and development work used to constrain the capabilities of IS-ARTS in the technical space compatible with the spacecraft environment. For the design configuration shown we conclude that a device can be constructed that is capable of 50 sample preparations over a 2 year lifespan with mass, power, and volume constraints compatible with current landed Mars mission configurations. The technical requirements of IS-ARTS (mass, power and number of samples produced) depend strongly on the sample mechanical properties, sample processing rate, the sample size and number of samples to be produced.  相似文献   
58.
We have developed a rock cutting mechanism for in situ planetary exploration based on abrasive diamond impregnated wire. Performance characteristics of the rock cutter, including cutting rate on several rock types, cutting surface lifetime, and cut rock surface finish are presented. The rock cutter was developed as part of a broader effort to develop an in situ automated rock thin section (IS-ARTS) instrument. The objective of IS-ARTS was to develop an instrument capable of producing petrographic rock thin sections on a planetary science spacecraft. The rock cutting mechanism may also be useful to other planetary science missions with in situ instruments in which sub-sampling and rock surface preparation are necessary.  相似文献   
59.
The Atacama along the Pacific Coast of Chile and Peru is one of the driest and possibly oldest deserts in the world. It represents an extreme habitat for life on Earth and is an analog for life in dry conditions on Mars. We report on four years (September 1994-October 1998) of climate and moisture data from the extreme arid region of the Atacama. Our data are focused on understanding moisture sources and their role in creating suitable environments for photosynthetic microorganisms in the desert surface. The average air temperature was 16.5 degrees C and 16.6 degrees C in 1995 and 1996, respectively. The maximum air temperature recorded was 37.9 degrees C, and the minimum was -5.7 degrees C. Annual average sunlight was 336 and 335 W m(-2) in 1995 and 1996, respectively. Winds averaged a few meters per second, with strong f?hn winds coming from the west exceeding 12 m s(-1). During our 4 years of observation there was only one significant rain event of 2.3 mm, which occurred near midnight local time. We suggest that this event was a rainout of a heavy fog. It is of interest that the strong El Ni?o of 1997-1998 brought heavy rainfall to the deserts of Peru, but did not bring significant rain to the central Atacama in Chile. Dew occurred at our station frequently following high nighttime relative humidity, but is not a significant source of moisture in the soil or under stones. Groundwater also does not contribute to surface moisture. Only the one rain event of 2.3 mm resulted in liquid water in the soil and beneath stones for a total of only 65-85 h over 4 years. The paucity of liquid water under stones is consistent with the apparent absence of hypolithic (under-stone) cyanobacteria, the only known primary producers in such extreme deserts.  相似文献   
60.
The Mercury Dual Imaging System on the MESSENGER Spacecraft   总被引:1,自引:0,他引:1  
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips. Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated from MDIS data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号