首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
航空   8篇
航天技术   11篇
航天   10篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2009年   3篇
  2008年   2篇
  2005年   2篇
  1975年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth’s limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.  相似文献   
22.
Dorn ED  Adami C 《Astrobiology》2011,11(10):959-968
Because organisms synthesize component molecules at rates that reflect those molecules' adaptive utility, we expect a population of biota to leave a distinctive chemical signature on its environment that is anomalous given the local (abiotic) chemistry. We observe the same effect in the distribution of computer instructions used by an evolving population of digital organisms, and we characterize the robustness of the evolved signature with respect to a number of different changes in the system's physics. The observed instruction abundance anomaly has features that are consistent over a large number of evolutionary trials and alterations in system parameters, which makes it a candidate for a non-Earth-centric life diagnostic.  相似文献   
23.
The method of obtaining absolute temperature estimates by measuring the ambipolar diffusion coefficient with meteor radars in the mesopause region is basically well known. However, there is still a need to refine and adjust the background temperature gradient model which is necessary to calculate the temperature values. Therefore, a detailed comparison with independent temperature measurements is necessary to evaluate the performance of the method and to obtain more information about the temperature gradient. Recent studies provide some evidence that the impact of the gradient model on temperature estimates affects the absolute temperatures, but that it is of minor importance for wave analysis. This paper focuses on a detailed evaluation of the meteor radar temperatures by comparing them with SABER satellite and OH-emission mesopause region temperatures. The seasonal variation of the observed temperatures is well reproduced by the COMMA general circulation model.  相似文献   
24.
This paper reviews research related to zodiacal light and tries to give the status for the end of 1974.  相似文献   
25.
We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.  相似文献   
26.
During spaceflight the immune system is one of the most affected systems of the human body. During the SIMBOX (Science in Microgravity Box) mission on Shenzhou-8, we investigated microgravity-associated long-term alterations in macrophageal cells, the most important effector cells of the immune system. We analyzed the effect of long-term microgravity on the cytoskeleton and immunologically relevant surface molecules. Human U937 cells were differentiated into a macrophageal phenotype and exposed to microgravity or 1g on a reference centrifuge on-orbit for 5 days. After on-orbit fixation, the samples were analyzed with immunocytochemical staining and confocal microscopy after landing. The unmanned Shenzhou-8 spacecraft was launched on board a Long March 2F (CZ-2F) rocket from the Jiuquan Satellite Launch Center (JSLC) and landed after a 17-day-mission. We found a severely disturbed actin cytoskeleton, disorganized tubulin and distinctly reduced expression of CD18, CD36 and MHC-II after the 5 days in microgravity. The disturbed cytoskeleton, the loss of surface receptors for bacteria recognition, the activation of T lymphocytes, the loss of an important scavenger receptor and of antigen-presenting molecules could represent a dysfunctional macrophage phenotype. This phenotype in microgravity would be not capable of migrating or recognizing and attacking pathogens, and it would no longer activate the specific immune system, which could be investigated in functional assays. Obviously, the results have to be interpreted with caution as the model system has some limitations and due to numerous technical and biological restrictions (e.g. 23 °C and no CO2 supply during in-flight incubation). All parameter were carefully pre-tested on ground. Therefore, the experiment could be adapted to the experimental conditions available on Shenzhou-8.  相似文献   
27.
Through the striving of humanity into space, new production processes and technologies for the use under microgravity will be essential in the future. Production of objects in space demands for new processes, like additive manufacturing. This paper presents the concept and the realization for a new machine to investigate microgravity production processes on earth. The machine is based on linear long stator drives and a vacuum chamber carrying up to 1000?kg. For the first time high repetition rate and associated low experimental costs can provide basic research. The paper also introduces the substrate-free additive manufacturing as a future research topic and one of our primary application.  相似文献   
28.
During recent years, special attention has been paid to understanding the background circulation of the middle atmosphere. Particularly in the mesosphere/lower thermosphere (MLT) region, this has involved including data from a range of new radar measurements. It has also involved the comparison of existing empirical middle atmosphere wind models, such as CIRA-86 and HWM-93 to the new data. This has led to the construction of empirical models of MLT winds such as the Global Empirical Wind Model (GEWM). Further investigations are aimed at the construction of new empirical and semi-empirical wind models of the entire middle atmosphere including these new experimental results. The results of a new wind climatology (0–100 km) are presented here, based upon the GEWM, a reanalysis of stratospheric data, and a numerical model which is used to fill the gap between data from the stratospheric and MLT regions.  相似文献   
29.
Primary photoionisation of major ionospheric constituents is calculated from satellite-borne solar EUV measurements. Number densities of the background atmosphere are taken from the NRLMSISE-00 climatology. From the calculated ionisation rates, a proxy termed EUV-TEC, which is based on the global total ionisation is calculated, and describes the ionospheric response to solar EUV and its variability. The proxy is compared against the global mean ionospheric total electron content (TEC) derived from GPS data. Results show that the EUV-TEC proxy provides a better overall representation of global TEC than conventional solar indices like F10.7 do. The EUV-TEC proxy may be used for scientific research, and to describe the ionospheric effects on radio communication and navigation systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号